1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
10

The Dragons Soccer Team is having a pizza party and voted on

Mathematics
2 answers:
kykrilka [37]3 years ago
8 0

Answer:

36%

Step-by-step explanation:

Korvikt [17]3 years ago
4 0

Answer:

no enough info

Step-by-step explanation:

You might be interested in
Yeah I don’t get this
umka2103 [35]

using pythagorean theorem

a^2 + b^2 = c^2

(12x)^2 + (16x)^2 = 10^2

square each term

144x^2 + 256x^2 = 100

combine like terms

400 x^2 = 100


divide by 400 on each side

x^2 = 1/4

take the square root on each side

x = 1/2


Answer:  x=1/2

8 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
What is a equivalent rational number to 1.28 repeating?
goblinko [34]
<span>the line over the 28 means the 28 repeats forever. 1.282828.... and so on let x be the rational number 1.28... we can use this trick: 100*1.282828....= 128.282828... (the decimal 28 part repeats) 100x = 128.28... next: 100x - x = 128.282828... - 1.282828... the .282828... part will be subtracted away 99x = 127 divide both sides by 99 to get x= 127/99</span>
3 0
3 years ago
I NEEEDDDD HELP PLZZZZZZZZZZZZZZZZZZZZZZZZZ
Montano1993 [528]

Answer:

80 cm

Step-by-step explanation:

The diagonals divide the rhombus into four congruent triangles.  The height of each triangle is 18/2 = 9, and the hypotenuse is 41.  Using Pythagorean theorem, the width of each triangle is:

c² = a² + b²

41² = 9² + x²

x = 40

Therefore, the longer diagonal is 2×40 = 80.

5 0
2 years ago
Please help me with this!
notsponge [240]

4 babies and 7 adults 

  B head=4x1=4    Aheads (3x7)=21     21+4=25 heads

B wings    4x2=8  A wings(4x7)=28       28+8=36


4 0
3 years ago
Read 2 more answers
Other questions:
  • Trejon rides his bike 2 1/4 Miles each day. Which equation can be used to find r, the number of miles he will ride in 8 days?
    8·1 answer
  • Show work <br> 3=x+3-5x<br> Please help! Thanks!
    14·2 answers
  • I need helpppp IDKK
    11·2 answers
  • 10r-60=9r solve for r​
    15·2 answers
  • The equation for Constant of Proportionality is y = kx? If you solved for the letter k instead of y, would the correct equation.
    11·1 answer
  • Evaluate 4 + (-2) - (-3) – 6.
    14·2 answers
  • HEEEELLLPP!!!
    12·2 answers
  • Diego hopes to attend a public Texas university in a city more than 300 miles from his home. The website lists the following cos
    15·1 answer
  • Derek was 4 years 2 months old when he joined school. Today he is 11 years 1 month old. For how long has he been in school?
    5·1 answer
  • What kind of triangle is ABC? Select all that apply.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!