Answer:
the solution of the system is:
x = 1 and y = 2.
Step-by-step explanation:
I suppose that we want to solve the equation:
-6*x + 6*y = 6
6*x + 3*y = 12
To solve this, we first need to isolate one of the variables in one of the equations.
Let's isolate y in the first equation:
6*y = 6 + 6*x
y = (6 + 6*x)/6
y = 6/6 + (6*x)/6
y = 1 + x
Now we can replace this in the other equation:
6*x + 3*(1 + x) = 12
6*x + 3 + 3*x = 12
9*x + 3 = 12
9*x = 12 - 3 = 9
x = 9/9 = 1
Now that we know that x = 1, we can replace this in the equation "y = 1 + x" to find the value of y.
y = 1 + (1) = 2
Then the solution of the system is:
x = 1 and y = 2.
Answer:
x^2+7x if you are asked to find the difference of a function f and function g
Step-by-step explanation:
We are asked to A-B or f(x)-g(x).
(4x^2+6x)-(3x^2-x)
4x^2+6x-3x^2+x
The like terms I'm going to pair up.
4x^2-3x^2+6x+x
1x^2 +7x
x^2 +7x
The answer is x^2+7x
Answer: D) 101
Step-by-step explanation:
By linearity, we can break it up into 2 integrals. The integral and derivative of f easily cancel out

I used the table for values of f(x) at 10 and -1. Wouldn't be surprised if this was part of a series of questions about f because I really can't see how you could use the hypothesis that f is twice differentiable on R. Same for the other table values. I'm curious about how you found the answer. Was it a different way?