Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
5 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed is simply defined as the distance travelled per unit time. Mathematically, it can be represented as:
Speed = distance travelled /time.
With the above formula, we can obtain the speed at which the duck is travelling as follow:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed = distance travelled /time.
Speed = 10 / 2
Speed = 5 Km/h
Thus, the duck is travelling at a speed of 5 Km/h
Answer:
the answer is B
Explanation:
speed is the rate at which the distance covered changes or the distance divided by the time taken.
scalar is always positive.
Answer:the witch has nothing to do with the problem
Explanation:
a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
We pass it every year early in January.
b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
We pass it every year early in July.
c). Proxihelion . . . a made-up, meaningless word
d). Equinox . . . the points on the map of the stars where the Sun
appears to be on March 21 and September 21.