Let's say the side length of square A is x, which means the side length of square B is 2x.
Then, the area of square A can be written as , and the area of square B can be written as .
There's no diagram here with shaded region, so I'll just find the area of square A as a percentage of the area of square B:
= 1/4 = 25%
So, the answer is 25% (note this is the answer to the question: "express the area of square A as a percentage of the area of square B; there is no diagram showing me where the shaded area is, so I cannot answer the original question
3x^-2 can be written
3/x^2 because x^-2 is = 1/x^2
Answer:
14 = x
Step-by-step explanation:
-2 on both sides you get 7 = x/2, multiply both sides by 2 and you get 14 = x
Answer:
x = 15
Therefore, the length and width are 31 and 47.
Step-by-step explanation:
Perimeter = (2x + 1) + (2x + 1) + (3x + 2) + (3x + 2) = 156
Simplified,
10x + 6 = 156
Subtract 6 from both sides, then divide by 10.
10x = 150
x = 15
To find the length and width, substitute 15 (the value of x) into the individual equations.
2(15) + 1 = 31
3(15) + 2 = 47
Answer:
y = -3x + 18
Step-by-step explanation:
y = mx + b
m = -3
6 = (-3) * 4 +b
b = 6 - (-3) * 4
b = 6 +12
b = 18
y = -3x + 18