Answer:
T = 1.73 kg
Explanation:
Let's use Newton's second law for this balance problem
We draw a coordinate system with the x axis parallel to the plane and the Y axis perpendicular
The only force we have to lay down is the weight (W)
Wx = W sin θ
Wy = W cos θ
Wx = 2.0 ain 60
Wx = 1.73 kg
Wy = 2.0 cos 60
Wy = 1.0 kg
Y Axis
N-Wy = 0
X axis
T- Wx = 0
T = Wx
T = 1.73 kg
Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

where
are charges,
is the distance between them and k is the coulomb constant.
case 1:

case 2

case 3:

Comparing the 3 cases:
The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.
Bella’s average velocity is about 0.693 meters per second.
To find the average velocity, you must divide the distance by the change in time, which should look like v=d/t
Here is how you set up the equation-
v=6.1/8.8
Once you divide 6.1 meters by 8.8 seconds, you should get a number that looks like 0.69318182.... however, I just rounded it to 0.693 meters per second. You can round it to whatever you like.
Hope this helped! If you have any questions about what I mentioned in my answer or explanation, feel free to comment on my answer and I’ll try to get back to you!
Im pretty sure it’s a because it makes more sense you know?.