Answer:

Explanation:
given,
mass of the body = 40 Kg
speed in x-axis = 238 m/s
mass break into three part
m₁ = 7 kg
v₁ = 356 m/s (along the positive y axis)
m₂ = 4.5 kg
v₂ = 357 m/s(along the negative x axis)
m₃ = 40 - (7 + 4.5) = 28.5 Kg
v₃ = ?
using conservation of momentum
MV = m₁v₁ + m₂v₂ + m₃v₃






Answer:
801.1 kJ
Explanation:
The ice increases in temperature from -20 °C to 0 °C and then melts at 0 °C.
The heat required to raise the ice to 0 °C is Q₁ = mc₁Δθ₁ where m = mass of ice = 1 kg, c₁ = specific heat capacity of ice = 2108 J/kg°C and Δθ₁ = temperature change. Q₁ = 1 kg × 2108 J/kg°C × (0 - (-20))°C = 2108 J/kg°C × 20 °C = 4216 J
The latent heat required to melt the ice is Q₂ = mL₁ where L₁ = specific latent heat of fusion of ice = 336000 J/kg. Q₁ = 1 kg × 336000 J/kg = 336000 J
The heat required to raise the water to 100 °C is Q₃ = mc₂Δθ₂ where m = mass of ice = 1 kg, c₂ = specific heat capacity of water = 4187 J/kg°C and Δθ₂ = temperature change. Q₃ = 1 kg × 4187 J/kg°C × (100 - 0)°C = 4187 J/kg°C × 100 °C = 418700 J
The latent heat required to convert the water to steam is Q₄ = mL₂ where L = specific latent heat of vapourisation of water = 2260 J/kg. Q₄ = 1 kg × 2260 J/kg = 2260 J
The heat required to raise the steam to 120 °C is Q₅ = mc₃Δθ₃ where m = mass of ice = 1 kg, c₃ = specific heat capacity of steam = 1996 J/kg°C and Δθ₃ = temperature change. Q₃ = 1 kg × 1996 J/kg°C × (120 - 100)°C = 1996 J/kg°C × 20 °C = 39920 J
The total amount of heat Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅ = 4216 J + 336000 J
+ 418700 J + 2260 J + 39920 J = 801096 J ≅ 801.1 kJ
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.