1) yes
2) no
3) a. yes
b. no
3) you have two question #3's...
4) Do your own homework
The probability would be 1/4 for hearts 1/13 for the number card I think this is right sorry if it’s not
Answer:
D. If the P-value for a particular test statistic is 0.33, she expects results at least as extreme as the test statistic in exactly 33 of 100 samples if the null hypothesis is true.
D. Since this event is not unusual, she will not reject the null hypothesis.
Step-by-step explanation:
Hello!
You have the following hypothesis:
H₀: ρ = 0.4
H₁: ρ < 0.4
Calculated p-value: 0.33
Remember: The p-value is defined as the probability corresponding to the calculated statistic if possible under the null hypothesis (i.e. the probability of obtaining a value as extreme as the value of the statistic under the null hypothesis).
In this case, you have a 33% chance of getting a value as extreme as the statistic value if the null hypothesis is true. In other words, you would expect results as extreme as the calculated statistic in 33 about 100 samples if the null hypothesis is true.
You didn't exactly specify a level of significance for the test, so, I'll use the most common one to make a decision: α: 0.05
Remember:
If p-value ≤ α, then you reject the null hypothesis.
If p-value > α, then you do not reject the null hypothesis.
Since 0.33 > 0.05 then I'll support the null hypothesis.
I hope it helps!
The expectation of this game is that the house (casino) takes in roughly $3.83 every time someone plays, and after enough plays, they will typically always win.
We can determine this case by looking at all of the possibilities and how much you can win or lose off of each. There are 36 total cases for what can happen when we roll the dice. Of those 36 cases, 9 of them produce positive winnings and 27 of them produce losses.
To calculate the winnings, we need to look at what type they are. 6 of them will be 7's which earn the gambler $20. 3 of them would be 4's, which earns the gambler $40.
6($20) + 3($40)
$120 + $120
$240
Then we look at the losses. This is easier to calculate since every time the gambler loses, he losses exactly $14. There are 27 of these instances.
27($14)
$378
Now we can look at the average loss per game by subtracting the losses from the gains and finding the average.
(Winnings - losses)/options
($240 - 378)/36
$3.83