First find the oxidation states of the various atoms:
<span>in Cr2O2 2- Cr @ +1; In NH3 N @ +3; in CrO3 Cr @ +3, N2 N @ 0 </span>
<span>Note that N gained electrons, ie, was reduced; Cr was oxidized </span>
<span>Now there is a problem, because B has NH4+ which the problem did not, and is not balanced, showing e- in/out </span>
<span>B.NH4+ → N2 </span>
<span>Which of the following is an oxidation half-reaction? </span>
<span>A.Sn 2+ →Sn 4+ + 2e- </span>
<span>Sn lost electrons so it got oxidized</span>
Answer:
Its pH value increases.
Explanation:
pH is the measure of alkalinity or acidity of a compound.
pH = - log [H+]
and pH + pOH = 14
where pOH is the measure of basicity of a solution, given by -log[OH-]
As a solution gets more basic that is higher [OH-], the pH increases, and on the other hand, as the pH of a solution decreases by one pH unit, the concentration of H+ increases by ten times.
Answer:
The answer is
<h2>0.052 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 2.5 g
volume = 48 cm³
The density is

We have the final answer as
<h3>0.052 g/cm³</h3>
Hope this helps you
If we analyze the situation analytically, there are situations or states. Then, we are also given with 2 values of pressure and 1 value of volume. Lastly, temperature was set as constant. Thus, this means we use the Boyle's Law.
P₁V₁ = P₂V₂
Let's find V₂.
(1 atm)(1.72 L) = (35 atm)(V₂)
Solving for V₂,
<em>V₂ = 0.049 L</em>
Answer:
balances and scales, measurement transducers, vibrating tube sensors, Newtonian mass measurement devices and the use of gravitational interaction between objects.
Explanation: