Answer:
ye computer ka sawal he .
Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
I would always start by balancing your carbons, and then balancing the rest from there.
1. C2H5OH + O2 —> CO2 + H2O - You have two carbons on the left and one on the right. Multiply CO2 by 2.
C2H5OH + O2 —> 2CO2 + H2O
Now balance hydrogen. You have 6 on the left and 2 on the right. Multiply H2O by 3.
C2H5OH + O2 —> 2CO2 + 3H2O
Now balance oxygen. You have 3 on the left and 7 on the right. You need 4 more on the left. Don’t multiply the C2H5OH by anything because that will change the numbers of everything else too. Multiply O2 by 3 instead.
C2H5OH + 3O2 —> 2CO2 + 3H2O
Check that all atoms are now balanced, and you’re good.
2. Same process as before.
First carbons - C3H8 + O2 —> 3CO2 + H2O
Then hydrogens - C3H8 + O2 —> 3CO2 + 4H2O
Then oxygens - C3H8 + 5O2 —> 3CO2 + 4H2O
3. Same again.
Carbons) C6H12O6 + O2 —> 6CO2 + H2O
Hydrogens) C6H12O6 + O2 —> 6CO2 + 6H2O
Oxygens) C6H12O6 + 6O2 —> 6CO2 + 6H2O
4. The general reaction for a combustion reaction is a hydrocarbon reacting with oxygen to produce carbon dioxide and water.
I don’t know but I think it would be products... that’s the best I can give. I’ll look more into it