Answer:
The displacement of the car after 6s is 43.2 m
Explanation:
Given;
velocity of the car, v = 12 m/s
acceleration of the car, a = -1.6 m/s² (backward acceleration)
time of motion, t = 6 s
The displacement of the car after 6s is given by the following kinematic equation;
d = ut + ¹/₂at²
d = (12 x 6) + ¹/₂(-1.6)(6)²
d = 72 - 28.8
d = 43.2 m
Therefore, the displacement of the car after 6s is 43.2 m
Answer:
According to the parallelogram law of vector addition if two vectors act along two adjacent sides of a parallelogram(having magnitude equal to the length of the sides) both pointing away from the common vertex, then the resultant is represented by the diagonal of the parallelogram passing through the same common vertex
Explanation:
Acceleration is the rate at which velocity changes.
<span>
Simply equate the two.
</span>
<span>dV / dt = F/m </span>
<span>F*dt = dV * m </span>
<span>
The impulse you give any object (average force * time elapsed) is equal to its change in momentum (mass * change in velocity).</span>