The answer is: 4) " 2.7 * 10⁵ mg " .
________________________________________________________
Explanation:
________________________________________________________
Since all answer choices given are in "mg" ("milligrams"); we need to convert our given value, "0.27 kg" ("kilograms") to "mg" ("milligrams").
________________________________________________________
Note the following "exact value" conversions:
________________________________________________________
1000 mg = 1 g ;
1000 g = 1 kg.
(0.27 kg) (1000 g / 1 kg) (1000 mg/1 g) = __?__ mg ;
_____________________________________________________
The units of "kg", and "g" cancel to "1" and we are left with:
________________________________________________
0.27 * 1000 * 1000 mg = 270,000 mg = 2.7 * 10<span>⁵ </span> mg ; which is:
_______________________________________________________
→ Answer choice: # 4 .
_______________________________________________________
Answer:
Partial pressure of CO2 = 16 atm
Explanation:
Total number of moles of gases = 4+1 = 5 moles
Mole fraction of CO2 = 4/5
Partial pressure of CO2 = mole fraction of CO2 × total pressure
Partial pressure of CO2 = (4/5) × 20
Partial pressure of CO2 = 16 atm
Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Refraction is the bending of light (it also happens with sound, water and other waves) as it passes from one transparent substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms and rainbows. Even our eyes depend upon this bending of light. Hope this helps!
Answer:
The answer to your question is: 7
Explanation:
The reaction between HCl and NaOH is a neutralization reaction, that means that the products will be water and a salt and the pH will be 7.
HCl + NaOH ⇒ NaCl + H₂O