Answer: The pressure in the can is 4.0 atm
Explanation:
According to ideal gas equation:
P = pressure of gas = ?
V = Volume of gas = 0.410 L
n = number of moles =
R = gas constant =
T =temperature =
Thus the pressure in the can is 4.0 atm
In terms of physically observing it, if the substance is a lions based substance, like oil or margarine, depending on the state, this will inform how well the hydrocarbons can pack together well or not, or will there be bends in the ring preventing the molecules from packing well.
Liquids are unsaturated
Solids are saturated.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
I'm not sure about part 1, you may need to google it, but part two is 11 protons, 11 electrons and 12 neutrons. You can find protons and electrons by just looking at the atomic number, and you can find neutrons by subtracting the atomic number from the atomic mass.
At STP
1L O₂ → 2L CO₂
xL O₂ → 5.0L CO₂
x=2.5 L