1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
11

Identify the wavelength of this wave.

Physics
1 answer:
Zolol [24]3 years ago
3 0

Answer:

A

Explanation:

The line(A) goes throughout the entire picture. So therefore choice A would be it's length.

You might be interested in
Joanna learned from customer satisfaction surveys that diners in her restaurant wanted to be able to make substitutions. She has
Dmitry [639]

Answer:

standards

Explanation:

Based on the information provided within the question in regards to the situation at hand it can be said that Joanna is demonstrating a standards gap. this is a gap caused by the difference between the customer service standards a company has created for itself and the expectations the company believes that the customers have for that company. Since Joanna did not tell all the servers of the customers expectations then the ones who do not know will not be able to provide this service to those customers, thus the restaurant will not be able to meet it's customer service standards.

3 0
4 years ago
A girl of mass m1=60 kilograms springs from a trampoline with an initial upward velocity of v1=8.0 meters per second. At height
AleksandrR [38]

a) 5.0 m/s

This first part of the problem can be solved by using the conservation of energy. In fact, the mechanical energy of the girl just after she jumps is equal to her kinetic energy:

E_i=\frac{1}{2}m_1v_1^2

where m1 = 60 kg is the girl's mass and v1 = 8.0 m/s is her initial velocity.

When she reaches the height of h = 2.0 m, her mechanical energy is sum of kinetic energy and potential energy:

E_f = \frac{1}{2}m_1 v_2 ^2 + m_1 gh

where v2 is the new speed of the girl (before grabbing the box), and h = 2.0m. Equalizing the two equations (because the mechanical energy is conserved), we find

\frac{1}{2}m_1 v_1^2 = \frac{1}{2}m_1 v_2 ^2 + m_1 gh\\v_1^2 = v_2^2 +2gh\\v_2 = \sqrt{v_1^2 -2gh}=\sqrt{(8.0 m/s)^2-(2)(9.8 m/s^2)(2.0 m)}=5.0 m/s

b) 4.0 m/s

After the girl grab the box, the total momentum of the system must be conserved. This means that the initial momentum of the girl must be equal to the total momentum of the girl+box after the girl catches the box:

p_i = p_f\\m_1 v_2 = (m_1 + m_2) v_3

where m2 = 15 kg is the mass of the box. Solving the equation for v3, the combined velocity of the girl+box, we find

v_3 = \frac{m_1 v_2}{m_1 + m_2}=\frac{(60 kg)(5.0 m/s)}{60 kg+15 kg}=4 m/s

c) 2.8 m

We can use again the law of conservation of energy. The total mechanical energy of the girl after she catches the box is sum of kinetic energy and potential energy:

E_i = \frac{1}{2}(m_1+m_2) v_3^2 + (m_1+m_2)gh=\frac{1}{2}(75 kg)(4 m/s)^2+(75 kg)(9.8 m/s^2)(2.0m)=2070 J

While at the maximum height, the speed is zero, so all the mechanical energy is just potential energy:

E_f = (m_1 +m_2)gh_{max}

where h_max is the maximum height. Equalizing the two expressions (because the mechanical energy must be conserved) and solving for h_max, we find

E_i = (m_1+m_2)gh_{max}\\h_{max}=\frac{E_i}{(m_1+m_2)g}=\frac{2070 J}{(75 kg)(9.8 m/s^2)}=2.8 m

4 0
3 years ago
I need help, please!
marta [7]

NO. it is not balanced

7 0
3 years ago
Therefore, they<br> experience a<br> and produce<br> surface tension.
ollegr [7]

Answer:

       

Explanation:

       

3 0
3 years ago
PLEASE PROVIDE AN EXPLANATION.<br><br> THANKS!!!
ziro4ka [17]

Answer:

(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz

(b) 250 m/s

(c) 1250 N

(d) Positive x-direction

(e) 6.00 m/s

(f) 0.0365 m

Explanation:

(a) The standard form of the wave is:

y = A cos ((2πf) t ± (2π/λ) x)

where A is the amplitude, f is the frequency, and λ is the wavelength.

If the x term has a positive coefficient, the wave moves to the left.

If the x term has a negative coefficient, the wave moves to the right.

Therefore:

A = 0.0800 m

2π/λ = 0.300 m⁻¹

λ = 20.9 m

2πf = 75.0 rad/s

f = 11.9 Hz

(b) Velocity is wavelength times frequency.

v = λf

v = (20.9 m) (11.9 Hz)

v = 250 m/s

(c) The tension is:

T = v²ρ

where ρ is the mass per unit length.

T = (250 m/s)² (0.0200 kg/m)

T = 1250 N

(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).

(e) The maximum transverse speed is Aω.

(0.0800 m) (75.0 rad/s)

6.00 m/s

(f) Plug in the values and find y.

y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))

y = 0.0365 m

8 0
3 years ago
Read 2 more answers
Other questions:
  • Why do not we observe space quantization for spinning top?
    11·1 answer
  • If a forces of 40 newtons moves a cart a distance of 9 meters, the work done is?
    5·1 answer
  • Which contribution did Johannes Kepler make?
    9·2 answers
  • How to treat thyroid at home​
    9·2 answers
  • The removal of an embedded gas from a solid object, as happens when formaldehyde in new carpets and furniture is released into t
    14·1 answer
  • An object with a temperature of 0 Kelvin would not emit radiation.<br> a. True<br> b. False
    12·2 answers
  • Green light has a lower frequency than blue light. Which color of light has a longer wavelength?
    8·2 answers
  • I need help with this​
    10·1 answer
  • Three cars (car F, car G, and car H) are moving with the same velocity, and slam on the brakes. The most massive car is car F, a
    7·1 answer
  • Explain how horizontal motion can be uniform while vertical motion is accelerated.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!