Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true
Explanation:
Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.
Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Answer:
When it’s gravitational
Explanation:
I’m pretty sure that’s the answer
Answer:
271cm^2
Explanation:
volume 1= 15^3 =3375
temp. 1. = 20+273 = 293
temp. 2. = 50+273 = 353
volume 2 =?
According to Charles law
volume is proportional to temperature
v2 = v1 * t2 / t1
v2 = 3375 * 353 / 293
v2 = 4066cm^3
v = area * length
4066 = area * 15
area = 4066/15 = 271cm^2
Answer:
D. 5m
Explanation:
fλ = c, where f is frequency, λ is wavelength and c is speed.
6λ=30
λ=30/6=5