Answer:
1) t=1.743 sec
2)Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)Vf=17.08 m/s
Explanation:
1)From second equation of motion we get
h=Vit+(1/2)gt^2
here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion
14.9=(0)*t+(1/2)(9.8)t^2
t^2=14.9/4.9
t^2=3.040 sec
t=1.743 sec
2) s=Vo*t
Putting values we get
107=Vo*1.743
Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)From third equation of motion we know that
Vf^2-Vi^2=2gh
here Vi=0 m/s,h=14.9 m
Vf^2=Vi^2+2gh=0+2(9.8)(14.9)
Vf^2=292.04
Vf=17.08 m/s
Answer:
the answer is the temperatures of both beakers' water will increase by the same amount...
Explanation:
I know this because i just did it on study island
I believe the answer is the fourth one, hope this helps
Answer:
<h2>True Hope it's helpful. plz mark me as brainlist. </h2>
Answer:
8.4 kW
Explanation:
Using the Stefan-Boltzmann law,
P = εAσT4
Where:
P: Radiation Energy
ε: Emissivity of the Surface. Check emissivity table below of common materials.
A: Surface Area, in m^2.
σ: Stefan-Boltzmann Constant, σ=5.67 × 10-8 W/m2•K4
T: Temperature
Plugging in values,
P = 0.85 x 3.328 x 5.67 x 10^(-8) x 205
P = 8383 W or 8.4 kW