Answer:
zero
Step-by-step explanation:
Answer:
A ≈ 12.57
Step-by-step explanation:
You have to take the formula: A = πr^2
1) Plug in what you know: A = π•2^2
2) π = 3.14 and 2^2 = 4
3) Multiply to get: 12.56637
4) Round
A ≈ 12.57
Answer:
45
Step-by-step explanation:
AEF is a similar triangle to ABC. that means it has the same angles, and the sides (and all other lines in the triangle) are scaled from the ABC length to the AEF length by the same factor f.
now, what is f ?
we know this from the relation of AC to FA.
FA = 12 mm
AC = 12 + 28 = 40 mm
so, going from AC to FA we multiply AC by f so that
AC × f = FA
40 × f = 12
f = 12/40 = 3/10
all other sides, heights, ... if ABC translate to their smaller counterparts in AEF by that multiplication with f (= 3/10).
the area of a triangle is
baseline × height / 2
aABC = 500
and because of the similarity we don't need to calculate the side and height in absolute numbers. we can use the relative sizes by referring to the original dimensions and the scaling factor f.
baseline small = baseline large × f
height small = height large × f
we know that
baseline large × height large / 2 = 500
baseline large × height large = 1000
aAEF = baseline small × height small / 2 =
= baseline large × f × height large × f / 2 =
= baseline large × height large × f² / 2 =
= 1000 × f² / 2 = 500 × f² = 500 ×(3/10)² =
= 500 × 9/100 = 5 × 9 = 45 mm²
Answer:
Step-by-step explanation:
If the roots are 1 + 5i and 1 - 5i, then you need the factors that result from those roots. They are (x - 1 + 5i) and (x - 1 - 5i). Now what you do with those is FOIL them out. Doing that gives you the following:
(what a mess, huh?)
The good thing is that several of those terms cancel each other out. +5ix cancels out the -5ix; -5i cancels out the 5i; and the 2 -x terms combine to -2x. That leaves you with:

Obviously you're in the section in math that deals with complex (imaginary) numbers so you should know that i-squared is equal to -1. Making that replacement:

a = 1, b = -2, c = 25
Logarithmic function.very easy find method 10 log = 1 , 5 log 0.6989700034