Answer: 195.3 K
Explanation: Use Charles Law to get T2
Charles Law V1 / T1 = V2 / T2
Derive the equation to find T2
T2 = V2T1 / V1
Convert temperature into K
T1 = 20.0 °C + 273 = 293 K
Substitute the values:
4.00 L x 293 K / 6.00 L = 195. 3 K
It is because of the small size and high electronegativity of nitrogen.
<span>Nitrogen has very small size as compared to the halogens, which have much larger sizes. Due to this, they can not remain bonded to the nitrogen atom and hence are highly unstable. </span>
Answer:
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Explanation:
Answer:
1. Ionic bond
2. High melting point and high boiling point for ionic bonds while covalent bonds have low melting and boiling point.
3. The similarity is that ionic and covalent bonding lead to the creation of stable molecules.
4. 4Fe + 3O2 → 2Fe2O3
5. It uses the process of fission.
6. Fission involves the splitting of radioactive elements into smaller particles/compounds while Fusion involves combining of two or more atomic nuclei to form one or more different atomic nuclei and subatomic particles.
7. Nuclear power plants produce little to no greenhouse gas.
Nuclear power plants produce a large amount of energy for a small mass of fuel.
Nuclear is less expensive.
Non-valence electrons: 1s22s22p6. Therefore, we write the electron configuration for Na: 1s22s22p63s1. What is the highest principal quantum number that you see in sodium's electron configuration? It's n = 3, so all electrons with n = 3 are valence electrons, and all electrons with n < 3 are non-valence electrons.