Answer is: Ksp = 4s³.
Balanced chemical reaction (dissociation) of strontium hydroxide:
Sr(OH)₂(s) → Sr²⁺(aq) + 2OH⁻(aq).
Ksp(Sr(OH)₂) = [Sr²⁺]·[OH⁻]².<span>
[</span>Sr²⁺] = s.<span>
[</span>OH⁻] = [Sr²⁺] = 2s<span>
Ksp = (2s)² · x = 4s³.
Ksp is the solubility product constant for
a solid substance dissolving in an aqueous solution.
[</span>Sr²⁺]
is equilibrium concentration of iumcations.<span>
[</span>OH⁻] is equilibrium concentration of hydroxide anions.
when we convert 32.5 lb/in² to atmosphere, the result obtained is 2.21 atm
<h3>Conversion scale</h3>
14.6959 lb/in² = 1 atm
<h3>Data obtained from the question</h3>
- Pressure (in lb/in²) = 32.5 lb/in²
- Pressure (in ATM) =?
<h3>How to convert 32.5 lb/in² to atm</h3>
14.6959 lb/in² = 1 atm
Therefore
32.5 lb/in² = 32.5 / 14.6959
32.5 lb/in² = 2.21 atm
Thus, 32.5 lb/in² is equivalent to 2.21 atm
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
<u>Answer:</u>
The correct answer option is C. 2.
<u>Explanation:</u>
We are given the number '0.0020' and we are to indicate the number of significant figures in the given measured number.
According to the rules of significant figures, numbers that are non-zero, zeros between any two significant numbers and the ending zeros in the decimal position are categorized as significant figures.
Since there is one non-zero number and one ending zero in the decimal position, therefore 0.0020 has 2 significant figures.
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
The answer is D.timber good luck