Due to the shape of the lens , parallel rays will be deviated
<h2>Right answer: Doldrums</h2>
These are also called zones of equatorial calm and it is due a climatic phenomenon that is placed near the Earth equator, attributed to the soft winds, that are called calm winds as well; accompanied by systems of abundant rains and heat.
In this area periods of great calm occur when the winds virtually disappear completely, trapping the sailing ships for long periods (days or weeks). This is why the term <em>doldrum</em> became popular as a colloquial expression in the eighteenth century, to refer to "<em>the caprice of the wind that slows down the navigation to sail".
</em>
The zone is located in the place where two trade winds meet, this means the trade winds of the northern hemisphere <u>converge</u> with those of the southern hemisphere, that is why this region is related to the <u>intertropical convergence zone</u>.
Answer:
4 m/s
Explanation:
to find m/s, divide the meters term by the seconds term. 100m/25s = 4m/s
Answer:
The final velocity of the race car is 27.14 m/s
Explanation:
Given;
initial velocity of the race car, u = 18.5 m/s
acceleration of the race car, a = 2.47 m/s²
distance covered by the race car, s = 79.78 m
Apply the following kinematic equation to determine the final velocity of the race car.
v² = u² + 2as
v² = (18.5)² + 2(2.47)(79.78)
v² = 736.363
v = √736.363
v = 27.14 m/s
Therefore, the final velocity of the racecar is 27.14 m/s
Answer:No
Explanation:
No
As the train is accelerating so train velocity will be more as compared to the ball and thus will cover more distance as compared to the ball.
When the ball is thrown upward with some velocity, it also possesses the train velocity at the time of throwing but as time passes velocity of train increases due to acceleration of the train. This causes the ball to fall behind the point of launch.