<span>move away from one another
(convergent is the opposite way)</span>
Well, if we've been paying attention in class, we already KNOW that the electrostatic force changes as the inverse square of the distance, and the top graph is conveniently labeled "Electrostatic Force".
But if we didn't already know that, we'd have to examine the graphs, and find the one where 'y' changes like 1/x² .
The top graph does that. After 1 unit of time, the force is 350. Double the time to 2 units, and the force should drop to 1/4 of 350 ... sure enough, it's a little less than 90. Double the time again, to 4 units, and it should drop to 1/4 of a little less than 90 ... by golly, it's down below 30.
The first graph is what an inverse square looks like. Now that you've worked out this graph, you'll know an inverse square relationship whenever you see it.
A bowl-shaped depression formed by a mountain glacier is termed a cirque.
Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
As the temperature of the lead and helium is the same. Thus the average kinetic energy is also the same for lead and helium.
Reason:
It is given that a 5.0-kg bar of lead is placed inside a 12-L chamber filled with helium gas. The temperature of the lead and helium is the same. It is required to compare the average kinetic energy of the lead atoms and helium atoms.
The average kinetic energy is calculated as,
.
Here K is the average kinetic energy, R is the gas constant, N is the Avogadro's number, and T is the temperature.
As the temperature is the same for both lead and helium. As a result, the average kinetic energy is also the same for lead and helium.
Learn more about average kinetic energy here,
brainly.com/question/1599923
#SPJ4