Answer:
Assuming there is no heat loss to the surrounding.
Heat lost by iron equals heat gained by water.
0.2(450)(50-x)=0.2(4200)(x-30)
x=31.94 °C
Explanation:
Answer:
∑F = 10.2 N
Explanation:
We have:
Initial velocity: 0.5 m/s
Final velocity: 3 m/s
Time: 1.5 s
We have all of the components needed to calculate acceleration. Let's do that, shall we?
a = vf-vo/t
a = 2.5/1.5
a = 1.7
/
Now, look at the Net Force equation:
∑F = ma
Plug in the variables, to get:
∑F = (6)(1.7)
∑F = 10.2 N (You can round this according to significant digits)
<em>The velocity vector of an object with a centripetal acceleration is never tangent to the circular path is False.</em>
Answer: <em>False</em>
Explanation:
Centripetal acceleration is a feature of objects in uniform circular motion. In that case velocity is along the tangent drawn to the circular path. For an object to be called accelerating its velocity should be variable but speed needn’t.
Even when the speed is constant an object can be accelerating. The direction of velocity of an object in uniform circular motion keeps changing continuously. This change in velocity in uniform circular motion is equal to the centripetal acceleration.
The cell cycle has two main phases, interphase and mitosis. Mitosis is the process during which one cell divides into two. Interphase is the time during which preparations for mitosis are made. Interphase itself is made up of three phases -- G1 phase, S phase, and G2 phase -- along with a special phase called G0.