Answer:
lw +
× π ×
⇒ Answer D is correct
Step-by-step explanation:
First, let us find the area of the semi-circle.
Area =
× π × r²
<u>Given that,</u>
diameter of the semi-circle is ⇒ <em>l</em>
∴ radius ⇒ <em>l / 2</em>
<u>Let us find it now.</u>
Area =
× π × r²
Area =
× π × 
<u> </u>
Secondly, let us find the area of the rectangle.
Area = length × width
<u>Given that,</u>
length ⇒ <em>l</em>
width ⇒ w
<u>Let us find it now.</u>
Area = length × width
Area = l ×w
Area = lw
<u> </u>
And now let us <u>find the total area.</u>
Total area = Area of the rectangle + Area of the semi - circle
Tota area = lw +
× π × 
Answer:
row 1
5
4
-9
10
23
2
-19
18
-13
row 2
7
10
25
31
42
-2
23
11
23
row 3
-3
15
-11
37
-7
3
35
3
0
Step-by-step explanation:
It is stil half becuase the real probability doesnt change
There are 6, you'd think there would be 8 but the answer is actually 6. A diagonal is a line segment that connects to vertices, the two vertices chosen do not count when forming the triangle, two vertices that are adjacent to that chosen vertex are NOT included when forming the diagonal. It's confusing, but I hope this helps. If you have any follow up questions I'd love to answer them.
Solution
Question 1:
- Use of the area of squares to explain the Pythagoras theorem is given below
- The 3 squares given above have dimensions: a, b, and c.
- The areas of the squares are given by:

- The Pythagoras theorem states that:
"The sum of the areas of the smaller squares add up to the area of the biggest square"
Thus, we have:

Question 2:
- We can apply the theorem as follows:
![\begin{gathered} 10^2+24^2=c^2 \\ 100+576=c^2 \\ 676=c^2 \\ \text{Take square root of both sides} \\ \\ c=\sqrt[]{676} \\ c=26 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%2010%5E2%2B24%5E2%3Dc%5E2%20%5C%5C%20100%2B576%3Dc%5E2%20%5C%5C%20676%3Dc%5E2%20%5C%5C%20%5Ctext%7BTake%20square%20root%20of%20both%20sides%7D%20%5C%5C%20%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B676%7D%20%5C%5C%20c%3D26%20%5Cend%7Bgathered%7D)
Thus, the value of c is 26