At an optimum pH of 7.0, there are more molecules per minute in all amounts of substrate thus this pH is ideal for maximum growth. 5. Enzymes function most efficiently at the temperature of a typical cell, which is 37 degrees Celsius. Increases or decreases in temperature can significantly lower the reaction rate.
Answer:
P_2 =0.51 atm
Explanation:
Given that:
Volume (V1) = 2.50 L
Temperature (T1) = 298 K
Volume (V2) = 4.50 L
at standard temperature and pressure;
Pressure (P1) = 1 atm
Temperature (T2) = 273 K
Pressure P2 = ??
Using combined gas law:




Biodiversity has a fundamental value to humans because we are so dependent on it for our cultural, economic, and environmental well-being. Some argue that it is our moral responsibility to preserve the Earth’s incredible diversity for the next generation. Others simply like knowing that nature’s great diversity exists and that the opportunity to utilize it later, if need be, is secure. Scientists value biodiversity because it offers clues about natural systems that we are still trying to understand. Arguably, the greatest value to humans, however, comes from the ?ecosystem services? it provides.
Biodiversity forms the backbone of viable ecosystems on which we depend on for basic necessities, security, and health. By breaking down plant and animal matter, for example, insects and other invertebrates make nutrients available to plants and are integral to the carbon and nitrogen cycles. Other species pollinate crops, an essential service for farmers. Healthy ecosystems can mitigate or prevent flooding, erosion, and other natural disasters. These ecosystem services also play a hand in the functioning of our climate and in both air and water quality.
Answer:
the answer is your a awesome person
Answer:
The specific heat of sodium is 1,23J/g°C
Explanation:
Using the atomic weight of sodium (23g/mol) and the atomic weight definition, we have that each mole of the substance has 23 grams of sodium.
starting from this, we use the atomic weight of sodium to convert the units from J / mol ° C to J / g ° C
