The structure of <span>4-chlorophthalic acid is attached below:
4-chlorophthalic acid is a dibasic acid i.e. it has 2 replaceable hydrogen atom. As compared to mineral acids, it is a weak acid. However, as compared to aliphatic acid, it is a strong acid. This is because of resonance effect.
</span><span>
</span>
<span>Neutrons to protons.
Neutrons and protons are tiny particles that are within the nucleus. Neutrons and protons make up the nucleus of the cell and the ratio of neutrons determine the stability of the atomic nuclei. The nucleus will become unstable if the ratio of neutrons to protons are not within the appropriate amount.</span>
Answer:
Sulfur: -1
Carbon: 0
Nitrogen: 0
Explanation:
The thiocyanate ion SCN- can have only two resonance structures, which are:
S - C ≡ N <--------> S = C = N
In the first structure, we have one single bond and one triple bond, in this case, the negative charge is located in the sulfur. This is because Sulfur have 6 electrons and those electrons are present in the atom, (see picture below), and counting the electron that is sharing with the Carbon, the total electrons that sulfur has is 7 (It has one more than usual). Carbon and nitrogen are already stable with 0 of formal charge, because carbon can only have 4 electrons which 1 is sharing with sulfur and the other 3 with the nitrogen, and nitrogen have 5 electrons, three sharing with carbon and the other two kept it for itself.
In the second structure, the negative charge of the sulfur is transfered to the nitrogen, meaning that it has 6 electrons the nitrogen (formal charge -1) and carbon and sulfur with 4 and 6 electrons respectively.
Between these two structures, the most stable is the first one basically because Sulfur is a better nucleophile than the Nitrogen, and can form stronger hydrogen bond in acid, giving more stable structure.
Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.