The solubility of PbBr₂(s) with the presence of 0.500 M of KBr is
2.64 x 10⁻⁵ M.
The empirical formula for a compound is KClO3
Explanation
find the moles of each element
moles = % composition/molar mass
molar mass of of potassium =39g/mol ,chlorine = 35.5 g/mol, oxygen =16 g/mol
moles of potassium = 31.9 / 39 = 0.818 moles
moles of chlorine = 28.9/35.5 = 0.814 moles
moles of oxygen = 39.2/ 16 = 2.45 moles
find the mole ratio by dividing with the smallest mole = 0.814 moles
potassium = 0.818/0.814 =1
chlorine = 0.814/0.814 = 1
oxygen = 2.45 /0.814 =3
the empirical formula is therefore = KClO3
Answer: The final temperature of nickel and water is
.
Explanation:
The given data is as follows.
Mass of water, m = 55.0 g,
Initial temp,
,
Final temp,
= ?,
Specific heat of water = 4.184
,
Now, we will calculate the heat energy as follows.
q = 
= 
Also,
mass of Ni, m = 15.0 g,
Initial temperature,
,
Final temperature,
= ?
Specific heat of nickel = 0.444 
Hence, we will calculate the heat energy as follows.
q = 
=
Therefore, heat energy lost by the alloy is equal to the heat energy gained by the water.

= -(
)
= 
Thus, we can conclude that the final temperature of nickel and water is
.
That’s ez that’s 1st grade math the answer is none
Answer:
Manganese decreases from 4+ to 2+ (reduced and oxidizing agent) and nitrogen increases from 2+ to 5+ (oxidized and reducing agent).
Explanation:
Hello there!
In this case, according to the given redox reaction, we rewrite it as a convenient first step:

Next, we assign the oxidation numbers as follows:

Thus, we can see that both manganese and nitrogen undergo a change in their oxidation number, the former decreases from 4+ to 2+ (reduced and oxidizing agent) and the latter increases from 2+ to 5+ (oxidized and reducing agent).
Regards!