<span>To convert between mass and number of moles, you can use the molar mass of the <span>substance.
Hope I helped : )
</span></span>
it is called the Earth's rotation
of water is 36.0 g. If any more NaCl is added past that point, it will not dissolve because the solution is saturated. If more solute is added and it does not dissolve, then the original solution was saturated. If the added solute dissolves, then the original solution was unsaturated.
Answer:
5.7
Explanation:
(C₂H₅)₃NHCl dissociates according to the following equation.
(C₂H₅)₃NHCl ⇒ (C₂H₅)₃NH⁺ + Cl⁻
The molar ratio of (C₂H₅)₃NHCl to (C₂H₅)₃NH⁺ is 1:1. Then, the concentration of (C₂H₅)₃NH⁺ is Ca = 0.166 M.
(C₂H₅)₃NH⁺ is the conjugate acid of (C₂H₅)₃N. Given the Kb of (C₂H₅)₃N, we can calculate Ka for (C₂H₅)₃NH⁺ using the following expression.
Ka × Kb = Kw
Ka = Kw / Kb
Ka = 1.0 × 10⁻¹⁴ / 5.2 × 10⁻⁴
Ka = 1.9 × 10⁻¹¹
(C₂H₅)₃NH⁺ dissociates according to the following equation.
(C₂H₅)₃NH⁺ ⇄ (C₂H₅)₃N + H⁺
We can calculate [H⁺] using the following expression.
[H⁺] = √(Ca × Ka) = √(0.166 × 1.9 × 10⁻¹¹) = 1.8 × 10⁻⁶
The pH is:
pH = -log [H⁺] = -log 1.8 × 10⁻⁶ = 5.7
Answer:
83.8%
Explanation:
The balanced reaction equation is;
2Al(s) + 3Cl2(g) → 2AlCl3(s)
Now we have to obtain the limiting reactant as the reactant that produces the least amount of AlCl3
Amount of Al = 3.11g/27 g/mol = 0.115 moles
If 2 moles of Al yields 2 moles of AlCl3
Then 0.115 moles of Al yields 0.115 moles of AlCl3
For Cl2
Amount of Cl2 = 5.32 g/71 g/mol= 0.075 moles
If 3 moles of Cl2 yields 2 moles of AlCl3
0.075 moles of Cl2 yields 0.075 * 2/3 = 0.05 moles of AlCl3
Hence Cl2 is the limiting reactant
Theoretical yield of AlCl3 = 0.05 moles of AlCl3 * 133g/mol = 6.65 g
%yield = actual yield /theoretical yield * 100
%yield = 5.57 g/6.65 g * 100
%yield = 83.8%