9514 1404 393
Answer:
a) x = -3
b) y = (28/27)x -27
Step-by-step explanation:
a) College street has a slope of 0, so is a horizontal line. 2nd Ave is perpendicular, so is a vertical line, described by an equation of the form ...
x = constant
For 2nd Ave to intersect the point (-3, 1), the constant must match that x-coordinate. The equation is ...
x = -3
__
b) Since Ace Rd is perpendicular to Davidson St, its slope will be the opposite reciprocal of the slope of Davidson St. The slope of Ace Rd is ...
m = -1/(-27/28) = 28/27
Using the point-slope equation for a line, we can model Ace Rd as ...
y -y1 = m(x -x1)
y -1 = (28/27)(x -27)
y = (28/27)x -27
Answer: y=2(x-3)-5
I hope this is good enough:
Answer:
Graph D.
Step-by-step explanation:
The line goes through the origin, and therefore shows direct variation.
Answer:
<h2>x = 2 </h2><h2>y = - 3</h2><h2>z = - 2</h2>
Step-by-step explanation:
6y - 5z = -8 .......... Equation 1
3z = -6 ................... Equation 2
4x - 3y - 2z= 21...... Equation 3
<u>First solve for z in Equation 2</u>
That's
3z = - 6
Divide both sides by 3
<h3>z = - 2</h3>
Next substitute the value of z into Equation 1 in order to find y
We have
6y - 5(-2) = - 8
6y + 10 = - 8
6y = - 8 - 10
6y = - 18
Divide both sides by 6
<h3>y = - 3</h3>
Finally substitute the values of y and z into Equation 3 to find the value of x
That's
4x - 3(-3) - 2(-2) = 21
4x + 9 + 4 = 21
4x + 13 = 21
4x = 21 - 13
4x = 8
Divide both sides by 4
<h3>x = 2</h3>
So the solutions are
<h3>x = 2 </h3><h3>y = - 3</h3><h3>z = - 2</h3>
Hope this helps you
Answer:
Step-by-step explanation:
<u>Perimeter is:</u>
- P = a + b + c
- P = 4x - 3 + x + 9 + 8 = 5x + 14
<u>Area is:</u>
- A = 1/2bh
- A = 1/2*8*3x = 12x
Correct choice is A