Filling out the table below following the outlined order:
- Calcium - symbol = Ca; Group =2; Period = 4; Ar = 134; Am =40.078u; Ph = solid; Density = 1.55; Bp = 1757K; Mp = 1115K.
- Vanadium - symbol = V; Group =5; Period = 4; Ar = 197; Am =50.9415u; Ph = solid; Density = 6.11; Bp = 3680K; Mp = 2183K.
- Manganese - symbol = Mn; Group =7; Period = 4; Ar = 127; Am = 54.938044u; Ph = solid; Density = 7.21; Bp = 2334K; Mp = 1519K.
- Cobalt: - symbol = Co; Group =9; Period = 4; Ar = 125; Am =58.933195 u; Ph = solid; Density = 8.90; Bp = 3200K; Mp = 1768K.
- Zinc: - symbol = Zn; Group = 12; Period = 4; Ar = 134; Am =65.38 u; Ph = solid; Density = 7.14; Bp = 1180K; Mp = 692.68K.
- Arsenic: - symbol = As; Group = 15; Period = 4; Ar = 197; Am = 74.9216 u; Ph = solid; Density = 5.75; Bp = 889K; Mp = 889K.
- Bromine: - symbol = Br; Group =17; Period = 4; Ar = 120; Am = 79.904 u; Ph = Liquid; Density = 3.1028; Bp = 332K; Mp = 265K.
<h3>Meaning of Element</h3>
An element can be defined as a substance that can not be broken down into simpler substances.
An element serves as a building blocks for compounds and mixtures.
In conclusion, each element and its property as requested in the table are given above.
Learn more about element : brainly.com/question/18096867
#SPJ1
Explanation:
When conducting a melting point experiment, if we were to heat a sample quickly. Large amount heat is provided instantly which would melt the crystals in the tube very quickly, even before the temperature of the thermometer reaches to that level. So the observes melting point would be much lower than the actual melting point when sample is heated slowly.
Answer:
5-chloro-1,3-cyclopentadiene
Explanation:
5-chloro-1,3-cyclopentadiene will react more slowly in an SN1 reaction. ( i.e. No reaction as the product is unstable ) attached is the representation of the rate of reaction of both Halides which shows that 5-chloro-1,3-cyclopentadiene reacts the slowest .
Also During SN1 reaction Carbocation is formed .
Attached below is the solution explanation
51.3 gram of water should form if 32.5 g of NH₃ react with enough oxygen.
<h3>How to find the Number of moles ?</h3>
To calculate the number of moles use the formula
Number of moles = 
= 
= 1.9 mol
4NH₃ + 5O₂ → 4NO + 6H₂O
4 mol of NH₃ react with oxygen to given 6 mole of water.
So 1.9 mol of NH₃ produces = 
= 2.85 mol of water
Mass of water = Molar Mass of water × Number of moles of water
= 18 × 2.85
= 51.3 gram
Thus from the above conclusion we can say that 51.3 gram of water should form if 32.5 g of NH₃ react with enough oxygen.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1