I hope that the attachment helps you..
The statement which is true of a wave that’s propagating along the pavement and girders of a suspension bridge is A. The wave is mechanical, with particles vibrating in a direction that is parallel to that of the wave, forming compressions and rarefactions.
Answer:
156.8 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 10 kg
Height (h) = 8 m
Time (t) = 5 s
Power (P) =?
Next, we shall determine the energy used by the motor to raise the block. This can be obtained as follow:
Mass (m) = 10 kg
Height (h) = 8 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 10 × 9. 8 × 8
E = 784 J
Finally, we shall determine the power output of the motor. This can be obtained as illustrated below:
Time (t) = 5 s
Energy (E) = 784 J
Power (P) =?
P = E/t
P = 784 / 5
P = 156.8 Watts
Therefore, the power output of the motor is 156.8 Watts
Answer:
Electromagnetic induction
Explanation:
The process of generating electric current with a magnetic field. It occurs whenever a magnetic field and an electric conductor move relative to one another so the conductor crosses lines of force in the magnetic field.
Answer:
Reorder the steps so that step 4 appears before step 3
Explanation:
In a nuclear power plant, we have;
1) Nuclear reaction between the radio active species and the particles takes place to generate energy in the nucleus of atoms
2) The nuclear energy in the atom is converted into radiant energy, which is the energy found in light, and thermal (heat) energy
3) The produced radiant and thermal energy is released as heat and light
4) With the produced heat, steam is generated
5) The generated steam turns the steam turbines and produced mechanical energy
6) The produced mechanical energy is then converted into electrical energy in the electrical generator of the power plant
To correct Savion's error, Step 4) the light and heat should be released before step 3) the released heat can be used to generate steam, we therefore reorder the steps so that step 4 appears before step 3.