Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.
Answer:
Two major causes are outline bellow
1. The presence of air in the system
2. Clogged condenser
Explanation:
1. The presence of air in the system
One of the causes that have been established in relation to high compressor discharge pressure is the presence of air in the system. When this takes place, your best solution is to recharge the system.
2. Clogged condenser
Another is a clogged condenser in which case you will need to clean the condenser so that it will function properly. When you happen to spot that the discharge valve is closed and it is causing high discharge pressure on the compressor, you can solve that easily by opening the valve
Answer:
you havent given the full question
but im guessing momentum
momentum is the quantity of motion of a moving body, measured as a product of its mass and velocity or the impetus gained by a moving object.
Explanation:
as the child is pushed, it gathers momentum as its weight allows it be pushed forward, and the velocity is the speed driven by the amount of force the parent pushes on the child whilst they are swinging. The momentum is the result of this action
the equation that links these factors together are
p = mv
p = momentum
m = mass
v = velocity
hope i got it right ._.
Answer:
P = 5sin(880πt)
Explanation:
We write the pressure in the form P = Asin2πft where A = amplitude of pressure, f = frequency of vibration and t = time.
Now, striking the middle-A tuning fork with a force that produces a maximum pressure of 5 pascals implies A = 5 Pa.
Also, the frequency of vibration is 440 hertz. So, f = 440Hz
Thus, P = Asin2πft
P = 5sin2π(440)t
P = 5sin(880πt)