X=original length of each side of the square.
perimeter: sum of all sides=4(length of the side)
The length of each side of the new square will be= (x-2)
we can suggest this equation:
4(x-2)=48
We solve this equation:
4(x-2)=48
4x-8=48
4x=48+8
4x=56
x=56/4
x=14
Answer: the original length of each side of the square would be 14 in.
1 minute = 60 seconds.
3 minutes x 60 seconds = 180 seconds.
180 seconds / 20 = 9
25 liters x 9 = 225
Total water in 3 minutes = 225 liters
So first we solve and simplify
pemdas
first parenthasees
9-4(x-y)=-6x+6
distribute using distributeive property of multiplication which is a(b+c)=(ab)+(ac)
so -4(x-y)=-4x+4y
9-4x+4y=-6x+6
add 6x to both sides
9+2x+4y=6
subtract 9 from both sides
2x+4y=-3
only B matches this
B is the correct answer
(I don't know what standard form is but I know what simplified is)
In a linear equation like y=2x+7 the slope represents
The standard formula for a parabola are
(x-h)^2 = +/- 4a (y-k) or (y-k)^2 = +/- 4a(x-h)
where
(h,k) is the coordinates of the vertex
a is the length of the focus from the vertes
+4a if the parabola opens upwards or to the right
-4a if the parabola opens downwards or to the left
The vertex (2,13) is situated in the 1st quadrant of the Cartesian plane. It only has y-intercept. This means that it only passes the y-axis once. Therefore, the parabola must open downwards and it passes the x-axis twice. The intersections at the x-axis are the x-intercepts. If the parabola has 2 x-intercepts, then the equation would be (x-h)^2 = -4a(y-k).
Let's use the y-intercept (0,5) to determine 4a:
(0-2)^2=-4a(5-13)
4a = 0.5
Therefore, the equation of the parabola is (x-2)^2 = -1/2(y-13). To find the x-intercepts, let y=0.
(x-2)^2 = -1/2(0-13) = 6.5
x-2 = +/- √6.5 = +/- 2.55
x = 4.55 and and -0.55
The x-intercepts are (-0.55,0) and (4.55,0).