Basically, the arrangement of electrons in electronic configuration follows three principles:
1. Aufbau Principle
You start from the highest energy level to the lowest. The arrangement is: <span>1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p.
2. Hund's Rule
Each box in the configuration can hold up to 2 electrons. This rule tells you to fill all boxes of one particular subshell with 1 electron first, before double occupying them.
3. Pauli's Exclusion Principle
This rule tells you that the two electrons in a box shall always have opposite spins, represented by one half-arrow up and one half-arrow down.</span>
Answer:
4. 1.18 mol·L⁻¹
14. See below.
Explanation:
4. Dilution calculation
V₁c₁ = V₂c₂
Data:
V₁ = 200 mL; c₁ = 5.6 mol·L⁻¹
V₂ = 950 mL; c₂ = ?
Calculation:
c₂ = c₁ × V₁/V₂
c₂ = 5.6 mol·L⁻¹ × (200/950) = 1.18 mol·L⁻¹
The new concentration is 1.18 mol·L⁻¹
.
14. Boyle's Law graphs
We can write Boyle's Law as
pV = k or p = k/V or V= k/p
p and V are inversely related.
(a) As pressure increases, volume decreases. Thus, a graph of V vs p is a hyperbola.
(b) p = k/V =k(1/V)
1/V = (1/k)p
y = m x + 0
A graph of 1/V vs p is a straight line.
Answer:
Cs and I
Explanation:
Salts are formed when an ionic bond is formed between two elements in the compound. Let us recall that the kind of bond formed between any two elements depends on the magnitude of electronegativity difference between the two elements.
Among the options listed, the highest degree of electronegativity difference occurs for the bond between Cs and I. This implies that this bond is ionic and the combination of the two elements will lead to salt formation.
Answer:
the attractive forces keep the particles together tightly enough so that the particles do not move past each other.
Explanation:
In the solid the particles vibrate in place.
Answer: Electric charges are of two general types: positive and negative.
Hope this helps... Stay safe and have a great day.... :D