If you only want to balance nuclear reactions, then you should know that number of nucleons are conserved before and after nuclear reaction. Also, charge is conserved as well.
Other things which are conserved in a nuclear reaction are:
Conservation of:
1. Parity
2. Spin
3. angular momentum(vector sum of intrinsic spin and orbital angular momentum)
4. linear momentum
5. Isotopic spin
6. Energy
The arrangement of particles in a gas is random. they have no orderly arrangement and are free to move around while the particles in solid are in an orderly and rigid arrangement and cannot move about. particles in liquid are also arranged orderly but are not rigid
Answer:
It is reactive because it has to gain an electron to have a full outermost energy level.
Explanation:
The electron configuration of oxygen is 1s2,2s2 2p4.
Oxygen is in group six in the periodic table so it has six electrons in its valence shell. This means that it needs to gain two electrons to obey the octet rule and have a full outer shell of electrons (eight).
Answer:
The discipline of Earth and space science is concerned with the study of the planets and stars is
A. Astronomy
Explanation:
A.Astronomy:
'Astron' means stars and 'nomos' means laws. So astronomy is the study of stars , planets and space
B.
biology
It is derived from Greek word : 'Bios' means life and 'logos' means study.
Biology is study of life, living organism ,structure of organisms,evolution
C.Geology
It is the earth science which includes the study of rocks and solid earth, what it is made of and how it has changed .
D. Oceanography
It is the study of physical and biological aspects of oceans
The energy released from 1 gram of uranium is more than 1 million times greater than the energy released from 3 grams of coal is True.
<u>Explanation:</u>
Nuclear Fission is the process in which splitting of a nucleus takes place that releases free neutrons and lighter nuclei. The fission of heavy elements like "Uranium is highly exothermic" and releases "200 million eV" compared to the energy that is released by burning coal which gives a few eV.
In the given example, it is obvious that the energy released from 1 gram of uranium is more than that of the energy released from 3 grams of coal because the amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only
part of the original nuclei is converted to energy.