The bond dissociation energy of the Cl - Cl bond is -958 kJ mol^-1.
<h3>What is the dissociation enthalpy?</h3>
Given that;
H-H bond energy = 435 kJ mol^-1
H-Cl bond energy = 431 kJ mol^-1
ΔHfO of HCL(g) = -92kJ mol^-1
Bond dissociation enthalpy of the Cl-Cl bond = x
-92 = 435 + 431 + x
x = -92 - (435 + 431)
x = -958 kJ mol^-1
Learn More about dissociation enthalpy:brainly.com/question/9998007?
#SPJ1
Answer:
4) 1.5 mol
Explanation:
Well, the equation is already balanced and the mole to mole ratio of reactants and products are all 1. So if the limiting reactant is HCl and you have 1.5 mol, you do the mole to mole ratio with NaCl and since it is 1 to 1, there'd be 1.5 mol of NaCl.
Answer:
To help determine what type of rock it is
Explanation:
Geologists can use information such as color, hardness, grain size, texture and other aspects of the rock to figure out the classification of a rock. for example, a light blue rock with no visible grain that is translucent and has a hardness of 9 is most likely going to be a saphire. hope this helps!!!!
Answer:
P = 27.9 atm
Explanation:
Given data:
Mass of CO₂ = 25 g
Temperature = 25°C (25+273.15 K = 298.15 K)
Volume of gas = 0.50 L
Pressure of gas = ?
Solution:
Firs of all we will calculate the number of moles of gas,
Number of moles = mass/molar mass
Number of moles = 25 g/ 44 g/mol
Number of moles = 0.57 mol
Pressure of gas :
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
P × 0.50 L = 0.57 mol × 0.0821 atm.L/ mol.K × 298.15 K
P = 13.95 atm.L/ 0.50 L
P = 27.9 atm