Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg
The problem applies Charles' law since constant pressure with varying volume and temperature are given. Assuming ideal gas law, the equation to be used is

=

. We make sure the temperatures are expressed in Kelvin, hence the given added with 273. The volume 2 is equal to 25.2881 liters.
Answer:
more rounded the grains are the more they have been moved around
Explanation:
Generally – the more rounded the grains are the more they have been moved around (i.e. the longer the length of time or distance they have moved). Angular grains cannot have travelled far
geolsoc.org.uk
<span>Catalysts decrease the activation energy and the more collisions result in a </span>reaction<span>, so the </span>rate<span> of </span><span>reaction increases.</span><span />