The pressure exerted by 0.57 moles of CO2 at a temperature of 25°C and a volume of 500 ml is 28 atm.
<u>Explanation:</u>
According to ideal gas law,
PV = nRT
where P represents the pressure of a gas,
V represents the volume of a gas,
n represents the number of moles,
R represents the gas constant = 0.0821 L atm / mol K.
T represents the temperature of a gas.
Given V = 500 ml = 0.5 l, T = 25°C = 298 K, n = 0.57 mol
PV = nRT
P = nRT / V
= (0.57
0.0821
298) / 0.5
P = 28 atm.
The pressure of a gas is 28 atm.
Groups 13-16, hope this helps!
Answer:
Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere.
Explanation:
Answer:
a) increases
b) decreases
c) does not change
d) increases
Explanation:
The vapour pressure of a liquid is dependent on;
I) the magnitude of intermolecular forces
II) the temperature of the liquid
Hence, when any of these increases, the vapour pressure increases likewise.
Similarly, the boiling point of a liquid depends on the magnitude of intermolecular forces present because as intermolecular forces increases, more energy is required to break intermolecular bonds.
Lastly, increase in surface area of a liquid does not really affect it's vapour pressure.