Given Information:
Frequency of horn = f₀ = 440 Hz
Speed of sound = v = 330 m/s
Speed of bus = v₀ = 20 m/s
Answer:
Case 1. When the bus is crossing the student = 440 Hz
Case 2. When the bus is approaching the student = 414.9 Hz
Case 3. When the bus is moving away from the student = 468.4 Hz
Explanation:
There are 3 cases in this scenario:
Case 1. When the bus is crossing the student
Case 2. When the bus is approaching the student
Case 3. When the bus is moving away from the student
Let us explore each case:
Case 1. When the bus is crossing the student:
Student will hear the same frequency emitted by the horn that is 440 Hz.
f = 440 Hz
Case 2. When the bus is approaching the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330+20 )
f = 440 ( 330/ 350 )
f = 440 ( 0.943 )
f = 414.9 Hz
Case 3. When the bus is moving away from the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330-20 )
f = 440 ( 330/ 310 )
f = 440 ( 1.0645 )
f = 468.4 Hz
><span>It can travel through vacuum.
The rays must travel in the vacuum of space between Earth's atmosphere and the sun.</span>
Answer:
The coefficient of kinetic friction between the sled and the snow is 0.0134
Explanation:
Given that:
M = mass of person = 52 kg
m = mass of sled = 15.2 kg
U = initial velocity of person = 3.63 m/s
u = initial velocity of sled = 0 m/s
After collision, the person and the sled would move with the same velocity V.
a) According to law of momentum conservation:
Total momentum before collision = Total momentum after collision
MU + mu = (M + m)V

Substituting values:

The velocity of the sled and person as they move away is 2.81 m/s
b) acceleration due to gravity (g) = 9.8 m/s²
d = 30 m
Using the formula:

The coefficient of kinetic friction between the sled and the snow is 0.0134