1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
7

Look at the two vectors below:

Physics
1 answer:
Komok [63]3 years ago
5 0

a) Draw their beginnings coming out of one point

b) Use addition in parallelogram.

You might be interested in
Please Answer the question in the picture ASAP PLEASE
attashe74 [19]

Answer:

HERE IS YOUR ANSWER

Explanation:

PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .

Beacuse of the loose connection of the wire .

Straight

5 0
3 years ago
The universal law of gravitation states that the force of attraction between two objects depends on which quantities?
STALIN [3.7K]

Answer: The answer is the masses of the objects and the distance between them

Explanation: Gravity is affected by mass and distance between two objects becuase if and object is too far the force of gravity will not be strong. The larger the object, the stronger the force of gravity will be.

3 0
3 years ago
An open organ pipe of length 0.47328 m and another pipe closed at one end of length 0.702821 m are sounded together. What beat f
sineoko [7]

Answer:

fb = 240.35 Hz

Explanation:

In order to calculate the beat frequency generated by the first modes of each, organ and tube, you use the following formulas for the fundamental frequencies.

Open tube:

f=\frac{v_s}{2L}         (1)

vs: speed of sound = 343m/s

L: length of the open tube = 0.47328m

You replace in the equation (1):

f=\frac{343m/s}{2(0.47228m)}=362.36Hz      

Closed tube:

f'=\frac{v_s}{4L'}

L': length of the closed tube = 0.702821m

f'=\frac{343m/s}{4(0.702821m)}=122.00Hz

Next, you use the following formula for the beat frequency:

f_b=|f-f'|=|362.36Hz-122.00Hz|=240.35Hz

The beat frequency generated by the first overtone pf the closed pipe and the fundamental of the open pipe is 240.35Hz

7 0
3 years ago
(1) Which appliance is designed to transfer electrical energy to kinetic energy?
sweet-ann [11.9K]

Answer:

bb kettle

Explanation:

it transfres electricsl to kinetic

8 0
3 years ago
A spherical shell is rolling without slipping at constant speed on a level floor. What percentage of the shell's total kinetic e
IgorC [24]

Answer:

41.667 per cent of the total kinetic energy is translational kinetic energy.

Explanation:

As the spherical shell is rolling without slipping at constant speed, the system can be considered as conservative due to the absence of non-conservative forces (i.e. drag, friction) and energy equation can be expressed only by the Principle of Energy Conservation, whose total energy is equal to the sum of rotational and translational kinetic energies. That is to say:

E = K_{t} + K_{r}

Where:

E - Total energy, measured in joules.

K_{r} - Rotational kinetic energy, measured in joules.

K_{t} - Translational kinetic energy, measured in joules.

The spherical shell can be considered as a rigid body, since there is no information of any deformation due to the motion. Then, rotational and translational components of kinetic energy are described by the following equations:

Rotational kinetic energy

K_{r} = \frac{1}{2}\cdot I_{g}\cdot \omega^{2}

Translational kinetic energy

K_{t} = \frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2}

Where:

I_{g} - Moment of inertia of the spherical shell with respect to its center of mass, measured in kg\cdot m^{2}.

\omega - Angular speed of the spherical shell, measured in radians per second.

R - Radius of the spherical shell, measured in meters.

After replacing each component and simplifying algebraically, the total energy of the spherical shell is equal to:

E = \frac{1}{2}\cdot (I_{g} + m\cdot R^{2})\cdot \omega^{2}

In addition, the moment of inertia of a spherical shell is equal to:

I_{g} = \frac{2}{3}\cdot m\cdot R^{2}

Then, total energy is reduced to this expression:

E = \frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2}

The fraction of the total kinetic energy that is translational in percentage is given by the following expression:

\%K_{t} = \frac{K_{t}}{E}\times 100\,\%

\%K_{t} = \frac{\frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2} }{\frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2} } \times 100\,\%

\%K_{t} = \frac{5}{12}\times 100\,\%

\%K_{t} = 41.667\,\%

41.667 per cent of the total kinetic energy is translational kinetic energy.

7 0
3 years ago
Other questions:
  • Choose the most acidic substance in the group.
    8·2 answers
  • Describe two ways in which heat is transported in the biosphere
    6·1 answer
  • An object falling. What type of energy is being described
    9·2 answers
  • What is the purpose of a free body diagram
    5·2 answers
  • A car's position in relation to time is plotted on the graph. What can be said about the car during segment B?
    11·2 answers
  • What is a lunar month
    7·2 answers
  • Which of the following is the water cycle process where the extra water that plants release is evaporated from their leaves?
    9·1 answer
  • A 1-kg collar (located at point (2,2) from the origin) is pulled along a vertical, frictionless bar with a force of 10 N applied
    6·1 answer
  • A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
    13·1 answer
  • What is the effect of the author proposing a "thought experiment" at the beginning of the text? FINANCIAL LITERACY
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!