To determine the energy equivalent of an object, we use the famous equation of Einstein which is E=mc^2 where m is the mass of the object and c is the speed of light (3x10^8 m/s). We calculate as follows:
E = mc^2
E = 1.83 kg (3x10^8 m/s)^2
E = 1.647x10^17 J
Answer:

Explanation:
The equation of equlibrium for the box is:

The formula for the acceleration, given in
, is:

Velocity can be derived from the following definition of acceleration:





![v =\sqrt{2\cdot[(2.278\,\frac{m}{s^{2}})\cdot x |_{0\,m}^{27\,m}-(0.034\,\frac{1}{s^{2}})\cdot x^{2}|_{0\,m}^{27\,m}] }](https://tex.z-dn.net/?f=v%20%3D%5Csqrt%7B2%5Ccdot%5B%282.278%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%20%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D-%280.034%5C%2C%5Cfrac%7B1%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%5E%7B2%7D%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D%5D%20%20%7D)
The speed after the box has travelled 17 meters is:

I believe its the law of inertia