<span>When the green arrow and solid red light is illuminated, </span>means you turn in the direction of the arrow.
The motion of the ball on the vertical axis is an accelerated motion, with acceleration

The following relationship holds for an uniformly accelerated motion:

where S is the distance covered, vf the final velocity and vi the initial velocity.
If we take the moment the ball reaches the maximum height (let's call this height h), then at this point of the motion the vertical velocity is zero:

So we can rewrite the equation as

from which we can isolate h

(1)
Now let's assume that

is the initial velocity of the first ball. The second ball has an initial velocity that is twice the one of the first ball:

. So the maximum height of the second ball is

(2)
Which is 4 times the height we found in (1). Therefore, the maximum height of ball 2 is 4 times the maximum height of ball 1.
Force exerted by Justin=300 N
Here power= 600 W
distance traveled=10 m
time=5 s
power is given by P= Work done/ time
600=work/5
so work= 60x5=3000J
now work done= force* distance
3000=F *10
F= 3000/10
F=300 N
Answer:
The total work done by Brad each day is 176400 J
Explanation:
Hi there! The work done by a force (F) pointed in the same direction as the displacement (d) is calculated as follows:
W = F · d
The force applied is equal to the weight of Brad, that is calculated as follows:
Weight = m · g
Where:
m = mass of Brad
g = acceleration due to gravity (9.8 m/s²)
Then:
Weight = 60 kg · 9.8 m/s² = 588 N
Let´s find the vertical distance traveled by Brad each day:
He exercises 20 min per day. Each minute Brad does 60 steps. In total, Brad steps up (20 min · 60 steps/min) 1200 steps. If each step has a height of 0.25 m, the total distance traveled by Brad will be
(1200 steps · 0.25 m/step) 300 m.
Then, the total work done by Brad is
W = F · d
W = 588 N · 300 m
W = 176400 J
The total work done by Brad each day is 176400 J