Answer: One of the units used to measure incident energy is calories per centimeter squared (cal/cm2).
Explanation: Incident energy this is defined as the amount of thermal energy impressed on a surface, at a certain distance from the source, generated during an electrical arc event.
The working distance is the distance from where the worker stands to the source location. The most common distance for which incident energy has been determined in tests is 18 inches.
Answer:
The answer to your question is A
Explanation:
because of Newton's second law of motion
Answer:
V=I×R
<em>4</em><em>.</em><em>5</em><em> </em><em>=</em><em> </em><em>I×</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>.</em><em> </em><em>=</em><em> </em><em>4</em><em>.</em><em>5</em><em>/</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>. </em><em>=</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>
<em>curre</em><em>nt</em><em> </em><em>is</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>
Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,



Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m