Answer:
a = 9.8 m/s²
Explanation:
Acceleration due to gravity on Earth is constant, which is 9.8 m/s²
Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by
with
- The frictional force, whose magnitude is
where , m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:
Answer:
20.96 h
Explanation:
The perimeter of the track is 2*pi*r = 20pi miles
In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.
From here, we can express the distance of A from X like this:
xa = 3t
And the distance of B would be:
xb = 20pi - 20 - 2t
The time t where they would passed each other and put 12 miles between them would be the one where xa - xb is equal to 12:
xa - xb = 12
3t - (20pi - 20 - 2t) = 12
5t = 20 pi - 8
t = (20pi - 8)/5 = 10.96 h
Remember to add this value to the 10 hours car B had already been racing:
t = 20.96h
It is weight, if I understand your question.
Answer:
143
Explanation:
Using one of the 3 fundamental equations in physics, y=vo*t+1/2gt^2, we can use this equation to find the total distance that was traveled.
Acceleration due to gravity is always 9.8m/s^2 and time is 5.4s, we also have no initial velocity.
Given this, we can plug in the known variables.
y=0t+1/2*9.8*5^2
simplify,
y=4.9*5.4^2
y=4.9*29.16
y=142.884m which we can round up to 143 meters
Final Answer: 143 meters