1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babunello [35]
3 years ago
13

What describes a change in velocity?

Chemistry
2 answers:
Oksi-84 [34.3K]3 years ago
7 0

Velocity is the displacement made per unit of time.

If direction or speed of the object change it causes change in velocity.

Acceleration is the term used for measuring the change of velocity. Acceleration is the change of velocity per unit of time.

siniylev [52]3 years ago
4 0
Acceleration can be described as changes in speed, changes in direction, or changes in both. Acceleration is a vector.
You might be interested in
How many moles of water will be generated during the combustion of 0.38 moles of methyl alcohol (CH3OH)? 2CH3OH + 3O2 2CO2 + 4H2
borishaifa [10]
0.76 it is option d  ;;;;;;;;;;;;;;;;;;;;;;;;;
3 0
3 years ago
What atom has 5 neutrons 4 protons and 2 electrons
Vilka [71]
<span>the atom that has these characteritics is called beryllium nucleus</span>
6 0
3 years ago
During an experiment, 95 grams of calcium carbonate reacted with an excess amount of hydrochloric acid. If the percent yield of
almond37 [142]

Answer:

Actual yield: 86.5 grams.

Explanation:

How many moles of formula units in 95 grams of calcium carbonate \rm CaCO_3?

Refer to a modern periodic table for relative atomic mass data:

  • Ca: 40.078;
  • C: 12.011;
  • O: 15.999.

Formula mass of \rm CaCO_3:

M(\mathrm{CaCO_3})  = \underbrace{1\times 40.078}_{\rm Ca} + \underbrace{1\times 12.011}_{\rm C} + \underbrace{3\times 15.999}_{\rm O} = \rm 100.086\;g\cdot mol^{-1}.

\displaystyle n(\mathrm{CaCO_3}) = \frac{m(\mathrm{CaCO_3})}{M(\mathrm{CaCO_3})} = \rm \frac{95\;g}{100.086\;g\cdot mol^{-1}} = 0.949184\;mol.

How many moles of \rm CaCl_2 will be produced?

The coefficient in front of \rm CaCO_3 in the chemical equation is the same as that in front of \rm CaCl_2. That is:

\displaystyle \frac{n(\rm CaCl_2)}{n(\rm CaCO_3)} = 1.

\displaystyle n(\mathrm{CaCl_2}) = n(\mathrm{CaCO_3})\cdot \frac{n(\rm CaCl_2)}{n(\rm CaCO_3)} = n(\mathrm{CaCO_3}) = \rm 0.949184\;mol.

What's the theoretical yield of calcium chloride? In other words, what's the mass of \rm 0.949184\;mol of \rm CaCl_2?

Again, refer to a periodic table for relative atomic data:

  • Ca: 40.078;
  • Cl: 35.45.

M(\mathrm{CaCl_2}) = \underbrace{1\times 40.078}_{\rm Ca} + \underbrace{2\times 35.45}_{\rm Cl} = \rm 110.978\;g\cdot mol^{-1}.

\begin{aligned}m(\mathrm{CaCl_2}) &= n(\mathrm{CaCl_2})\cdot M(\mathrm{CaCl_2})\\ &= \rm 0.949184\;mol\times 110.978\;g\cdot mol^{-1}\\ &= \rm 105.339\; g\end{aligned}.

What's the actual yield of calcium chloride?

\displaystyle \text{Percentage Yield} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}}\times 100\%.

\displaystyle \begin{aligned}\text{Actual Yield} &= \text{Theoretical Yield}\cdot \frac{\text{Percentage Yield}}{100\%}\\ &=\rm 105.339\; g \times \frac{82.15\%}{100\%}\\&= \rm 86.5\;g \end{aligned}.

8 0
3 years ago
The colour imparted to a flame by calcium ion?
emmainna [20.7K]
The flame goes an Orange-Red colour.
6 0
3 years ago
Rank the following elements by effective nuclear charge, Zeff, for a valence electron. F LI Be B N
Stels [109]

Answer:

Rank in increasing order of effective nuclear charge:

  • Li < Be < B < N < F

Explanation:

This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.

<u>1) Effective nuclear charge definitions</u>

  • While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.

  • Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.

<u><em>2) Z eff for a F valence electron:</em></u>

  • F's atomic number: Z = 9
  • Total number of electrons: 9 (same numer of protons)
  • Period: 17 (search in the periodic table or do the electron configuration)
  • Number of valence electrons:  7 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
  • Zeff = Z - S = 9 - 2 = 7

<u><em>3) Z eff for a Li valence eletron:</em></u>

  • Li's atomic number: Z = 3
  • Total number of electrons: 3 (same number of protons)
  • Period: 1 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 1 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
  • Z eff = Z - S = 3 - 2 = 1.

<em>4) Z eff for a Be valence eletron:</em>

  • Be's atomic number: Z = 4
  • Total number of electrons: 4 (same number of protons)
  • Period: 2 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 2 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
  • Z eff = Z - S = 4 - 2 = 2

<u><em>5) Z eff for a B valence eletron:</em></u>

  • B's atomic number: Z = 5
  • Total number of electrons: 5 (same number of protons)
  • Period: 13 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 3 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
  • Z eff = Z - S = 5 - 2 = 3

<u><em>6) Z eff for a N valence eletron:</em></u>

  • N's atomic number: Z = 7
  • Total number of electrons: 7 (same number of protons)
  • Period: 15 (search on the periodic table or do the electron configuration)
  • Number of valence electrons: 5 (equal to the last digit of the period's number)
  • Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
  • Z eff = Z - S = 7 - 2 = 5

<u><em>7) Summary (order):</em></u>

  Atom          Zeff for a valence electron

  • F                   7
  • Li                   1
  • Be                 2
  • B                   3
  • N                   5

  • <u>Conclusion</u>: the order is Li < Be < B < N < F
6 0
3 years ago
Other questions:
  • A sample of NO2 in a 1550 mL metal cylinder at 70.26 kPa has its temperature changed from 480oC to -237oC while its volume is si
    15·1 answer
  • What is the advantage of using inert gasses in a process?
    6·1 answer
  • What is the difference between double salt and complex salt​
    12·1 answer
  • Can someone help me please
    6·2 answers
  • we have not visited jupiter to collect samples, so how do we know what the atmosphere is composed of?
    14·1 answer
  • A student needs 7.6 liters of a 0.18 molar solution for an experiment. How many grams of solute does the student need if the mol
    5·1 answer
  • Explain why the ionization energy to remove a second electron from potassium is higher than the ionization energy to remove four
    13·1 answer
  • Winter Bynes harness mechanical energy from the wind and transform into energy that can power homes and businesses wind power de
    8·1 answer
  • A chemist prepares a solution of copper) sulfate (cuso4)by weighing out 29.9 g of copper ) sulfate into a 150 into a 150.mLvolum
    14·1 answer
  • one mole of sodium chloride is added to 100 ml of water in beaker a. one mole of glucose, c6h12o6, is added to 100 ml of water i
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!