Answer:
C
Explanation:
It is the answer I think let me know
Answer:
v = 40 [m/s].
Explanation:
Linear momentum is defined as the product of mass by Velocity. In this way, by means of the following equation, we can calculate the momentum.

where:
m = mass [kg]
v = velocity [m/s]
![P =20*10\\P =200 [kg*m/s]](https://tex.z-dn.net/?f=P%20%3D20%2A10%5C%5CP%20%3D200%20%5Bkg%2Am%2Fs%5D)
Since all momentum is transferred, we can say that this momentum is equal for the mass of 5 [kg]. In this way, we can determine the speed after the impact.
![v = P/m\\v = 200/5\\v = 40 [m/s]](https://tex.z-dn.net/?f=v%20%3D%20P%2Fm%5C%5Cv%20%3D%20200%2F5%5C%5Cv%20%3D%2040%20%5Bm%2Fs%5D)
Answer:

Explanation:
given,
op-amp circuit with a gain of = (Av₁) = 96 V/V
Band width = (Bw₁) = 8 kHz
Required bandwidth(Bw₂) = 32 kHz
Highest gain available =(Av₂) = ?
For the given system Bandwidth product is constant
Av₁ Bw₁ = Av₂ Bw₂
96 x 8 = Av₂ x 32


the highest gain available under these conditions 
Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)
