The particle will have an energy of 12U0. A particle travels at an initial velocity from point B to point A, gaining U0 joules of kinetic energy along the way. The constant force at this point is equal to 12F.
<h3>Does 9.8 represent gravity?</h3>
The acceleration which gravity gives to objects falling freely serves as a gauge of its strength. The gravity's acceleration at Earth's surface is approximately 9.8 meters (32 feet) per second every second.
<h3>What is a good illustration of gravity?</h3>
The following are a few instances of the power of gravity: the energy holding the gases inside the sun. the power behind a ball's descent after being thrown into the air. the force that makes an automobile coast down even when the gas is not depressed.
To know more about Gravitational visit:
brainly.com/question/3009841
#SPJ4
Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Answer:
a. A
Explanation:
Kepler's First Law says that the orbits of planets are ellipses with the sun at one focus of the ellipse. Moreover, Kepler’s Second Law says that the line joining the planet to the sun sweeps out equal areas in equal times as it moves along its orbit. Finally, Kepler’s Third Law says that the ratio of the squares of the periods for two planets is equal to the ratio of the cubes of their semi-major axes.
By these laws, the comet A will have lower orbital speed.
Answer:
I'm pretty sure the answer is D
Explanation:
Honestly it's just a guess so let me know if it's right :3