Answer:
The distance between mirror and you is 2 ft.
Explanation:
diameter, d = 8 ft
radius of curvature, R = 4 ft
magnification, m = 0.5
focal length, f = R/2 = 4/2 = 2 ft
let the distance of object is u and the distance of image is v.

Use the formula of magnification

KE= (1/2) mv²
So, the variables we need to include in our question would be a varable for a mass(m) of an object at some velocity(v).
My Answer:
(This is just an example question, yours can be different)
What is the Kinetic Energy experienced by an bouncy ball rolling at 7m/s (that's your velocity) across a frictionless surface that has a mass(m) of 10 grams?
When the life preserver is dropped from the helicopter, the only force acting on the object is the gravitational force. This modifies the equations of motion. Thus, the working equation is written below:
h = vt + 0.5gt²
where
v is the initial velocity
g is the acceleration due to gravity equal to 9.81 m/s²
h is the height of the fall
h = (1.46 m/s)(1.8 s) + 0.5(9.81 m/s²)(1.8 s)
h = 11.457 m
Answer:
Proof in explanataion
Explanation:
The basic dimensions are as follows:
MASS = M
LENGTH = L
TIME = T
i)
Given equation is:

where,
H = height (meters)
u = speed (m/s)
g = acceleration due to gravity (m/s²)
Sin Ф = constant (no unit)
So there dimensions will be:
H = [L]
u = [LT⁻¹]
g = [LT⁻²]
Sin Ф = no dimension
Therefore,
![[L] = \frac{[LT^{-1}]^2}{[LT^{-2}]}\\\\\ [L] = [L^{(2-1)}T^{(-2+2)}]](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20%5Cfrac%7B%5BLT%5E%7B-1%7D%5D%5E2%7D%7B%5BLT%5E%7B-2%7D%5D%7D%5C%5C%5C%5C%5C%20%5BL%5D%20%3D%20%5BL%5E%7B%282-1%29%7DT%5E%7B%28-2%2B2%29%7D%5D)
<u>[L] = [L]</u>
Hence, the equation is proven to be homogenous.
ii)

where,
F = Force = Newton = kg.m/s² = [MLT⁻²]
G = Gravitational Constant = N.m²/kg² = (kg.m/s²)m²/kg² = m³/kg.s²
G = [M⁻¹L³T⁻²]
m₁ = m₂ = mass = kg = [M]
r = distance = m = [L]
Therefore,
![[MLT^{-2}] = \frac{[M^{-1}L^{3}T^{-2}][M][M]}{[L]^2}\\\\\ [MLT^{-2}] = [M^{(-1+1+1)}L^{(3-2)}T^{-2}]\\\\](https://tex.z-dn.net/?f=%5BMLT%5E%7B-2%7D%5D%20%3D%20%5Cfrac%7B%5BM%5E%7B-1%7DL%5E%7B3%7DT%5E%7B-2%7D%5D%5BM%5D%5BM%5D%7D%7B%5BL%5D%5E2%7D%5C%5C%5C%5C%5C%20%5BMLT%5E%7B-2%7D%5D%20%3D%20%5BM%5E%7B%28-1%2B1%2B1%29%7DL%5E%7B%283-2%29%7DT%5E%7B-2%7D%5D%5C%5C%5C%5C)
<u>[MLT⁻²] = [MLT⁻²]</u>
Hence, the equation is proven to be homogenous.