1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>
Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;

Therefore, substituting the known values for the pebble, we have;

Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.
Answer:
r = 16 Km
Explanation:
given
m_n= 1.67 x 10^-27 Kg
M_star = 3.88 x 10^30 Kg
A= M_star/m_n
A= 3.88*10^30/1.67 x 10^-27
A=2.28 *10^57 neutrons A = The number of neutrons
we use the number of neutrons as a mass number because the star has only neutrons. = 1.2 x 10-15 m
r = r_o*A^1/3
r = 1.2*10^-15*2.28 *10^57^1/3
r = 16 Km
Calculate its average speed in meters per second
Answer:
5.77 m/s
Explanation:
Speed= Distance/Time
Distance= 40+ half of 40= 40+20= 60 m
Time= 8.8+1.6=10.4 s
Average speed= 60/10.4=5.769230769 m/s
Approximately, the average speed is 5.77 m/s
Answer:
If the force remains the same, the acceleration would decrease
Explanation:
According to Newton's second law, the acceleration of an object is given by

where
F is the force applied to the object
m is the mass of the object
As we see from the formula, the acceleration a is inversely proportional to the mass, m. Therefore, if the force F remains constant, this means that if the mass of the skateboarder increases, then the acceleration will decrease.