Answer:
Friction force is the force that one object exerts in another when the two rub against each other. Most of the time, friction force opposes the motion of an object.
Explanation:
Unbalanced because if it is pushing then stopping, that means that it is unbalanced.
Hello! You can call me Emac or Eric.
I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.
Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.
Please reply if this doesn’t help, I will try my best to gather more information or a answer.
Here is some good information that could help you out a lot!
Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.
Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.
We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.
That is some information, I do have more if you need some! Thanks!
Have a great rest of your day/night! :)
Emacathy,
Brainly Team.
Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .