When you heated the can with the bit of water inside and you boiled it over a flame, the water turned to vapor (gas) and the pressure in the inside of the can is different from the pressure on the outside of the can. When you placed the can into a ice water beaker or a container, the can shrunk it's size, decreasing it's mass and density. The can shrunk as a result of the inside pressure being equalized with the outside pressure.
The part where you placed it in the ice bath or container was when the water vapor was forced out of the can.
Answer: 6 moles
Take a look at the balanced chemical equation for this synthesis reaction
N 2(g] + 3 H 2(g] → 2 NH 3(g]
Notice that you have a 1:3 mole ratio between nitrogen gas and hydrogen gas. This means that, regardless of how many moles of nitrogen gas you have, the reaction will always consume twice as many moles of hydrogen gas.
So, if you have 2 moles of nitrogen taking part in the reaction, you will need
2 moles N 2 ⋅ 3 moles H 2 /1 mole N 2 = 6 moles H 2
I used the genetic code table. mRNA codon ===> amino acid
1st base 2nd base 3rd base
A U U ===> Isoleucine
A U C ===> Isoleucine
The point mutation of codon AUU to AUC is a neutral mutation because it neither benefits nor deter the ability of the organism to survive and reproduce.
As you can see, Both codons result to the Isoleucine amino acid.
Another codon that will still result to the Isoleucin amino acid is AUA.
Molecular mass of H2O is: 16+2*1=18
so moles of 40g of H2O is: 40/18=2.22