Answer:
7.1 m
Explanation:
Given:
Distance traveled by the student in the first attempt = 
Distance traveled by the student in the second attempt = 
So, the maximum distance that the student could travel in this attempt = 
So, the maximum distance that the student could travel in this attempt = 
Since the student first moves straight in a particular direction, rests for a while and then moves some distance in the same direction.
So, the largest distance that the student could possibly be from the starting point would be the largest distance of the final position of the student from the starting point.
And this distance is equal to the sum of the maximum distance possible in the first attempt and the second attempt of walking which is 7.1 m.
Hence, the largest distance that the student could possibly be from the starting point is 7.1 m.
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
True, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
<h3>Relationship between dielectric material and electric field</h3>
The electric field in a capacitor separates the negative and positive charges in the dielectric material, this causes an attractive force between each plate and the dielectric.
The dielectric material can store electric energy due to its polarization in the presence of external electric field, which causes the positive charge to store on one electrode and negative charge on the other.
Thus, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
Learn more about dielectric material here: brainly.com/question/17090590
ocean waves because its not artificial
Answer:
Option A.
Explanation:
The correct answer is Option A.
The car uses energy to move.
A car is a machine that converts energy locked in fuel like petrol or diesel and turn it into mechanical energy.
The energy produced from the combustion of gasoline is then used to move the shaft, which sends the power to the rear axle and the wheel starts to move.