1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
2 years ago
5

You observe a star cluster with a main-sequence turn-off point at spectral type G2 (the same spectral type as the Sun). What is

the age of this star cluster
Physics
1 answer:
Goryan [66]2 years ago
3 0

Answer i dont even know im just putting this cus id ont care

Explanation:

You might be interested in
Summarize: Based on what you have learned, how will the sound that the observer hears
Reil [10]

Answer: The sound will change due to changes in frequency and the wavelength of the airplane.

Explanation: Let assume that the observer is at a stationary position. The wavelength of the sound from the airplane reduces and the frequency increases as the plane is moving toward the observer. As the airplane passes by, that is, moving away from the observer, the frequency starts to reduce while the wavelength of the sound starts to increase.

The sound that the observer hears will change base on the illustration above.

3 0
2 years ago
A physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red
Alik [6]

Answer:

Speed of physicist car is 0.036c or 1.08 x 10⁷ m/s .

Explanation:

Doppler Effect is defined as the change in frequency or wavelength of the wave as the source or/and observer moving away or towards each other.

In this case, the Doppler effect equation in terms of wavelength is :

\lambda_{s} = \lambda_{o}\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }       ......(1)

Here \lambda_{s} is source wavelength, \lambda_{o} is observed wavelength, v is speed of the observer and c is the speed of light.

Given :

Source wavelength, \lambda_{s} = 660 nm = 660 x 10⁻⁹ m

Observed wavelength, \lambda_{0} = 555 nm = 555 x 10⁻⁹ m

Substitute these values in the equation (1).

555\times10^{-9} } = 660\times10^{-9} \sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }

\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = 0.84

{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = (0.84)^{2} = 0.7056

1-\frac{v}{c}=0.7056+0.7056\frac{v}{c}

\frac{v}{c}=\frac{0.2944}{8.056}

v = 0.036c=0.036\times3\times10^{8}

v = 1.08 x 10⁷ m/s  

8 0
3 years ago
Which of the following is true about light waves and sound waves? A. Sound waves can move at different speeds, but light waves a
vivado [14]

Answer:

C

Explanation:

Sound waves speed up noticeably when moving through a solid or liquid, because all it is is just particles colliding; and particles are way closer together with those states of matter.

The speed of light can change when moving through different substances, but this is dependent on complicated factors such as frequency, polarization, intensity, et. cetera

The important part is that it does change speed, so your answer is C.

Hope this helps!

3 0
3 years ago
A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10r, where a and fare in m/s^2
xz_007 [3.2K]

Answer:

Mistake in question

The correct question

A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10t , where a and t are in m/s² and seconds, respectively. After reaching a speed of 125 m/s, a parachute is deployed to help slow down the dragster. Knowing that this deceleration is defined by the relationship a = - 0.02v², where v is the velocity in m/s, determine (a) the total time from the beginning of the race until the car slows back down to 10 m/s, (b) the total distance the car travels during this time.

Explanation:

Given the function

a = 50 —10t

The car started from rest u = 0

And it accelerates to a speed of 125m/s

Then, let find the time in this stage

Acceleration can be modeled by

a = dv/dt

Then, dv/dt = 50—10t

Using variable separation to solve the differentiation equation

dv = (50—10t)dt

Integrating both sides

∫ dv = ∫ (50—10t)dt

Note, v ranges from 0 to 125seconds, so we want to know the time when it accelerate to 125m/s. So t ranges from 0 to t'

∫ dv = ∫ (50—10t)dt

v = 50t —10t²/2. Equation 1

[v] 0<v<125 = 50t —10t²/2 0<t<t'

125—0 = 50t — 5t² 0<t<t'

125 = 50t' — 5t'²

Divide through by 5

25 = 10t' — t'²

t'² —10t' + 25 = 0

Solving the quadratic equation

t'² —5t' —5t' + 25 = 0

t'(t' —5) —5(t' + 5) = 0

(t' —5)(t' —5) = 0

Then, (t' —5) = 0 twice

Then, t' = 5 seconds twice

So, the car spent 5 seconds to get to 125m/s.

The second stage when the parachute was deployed

We want to the time parachute reduce the speed from 125m/s to 10m/s,

So the range of the velocity is 125m/s to 10m/s. And time ranges from 0 to t''

The function of deceleration is give as

a = - 0.02v²

We know that, a = dv/dt

Then, dv/dt = - 0.02v²

Using variable separation

(1/0.02v²) dv = - dt

(50/v²) dv = - dt

50v^-2 dv = - dt

Integrate Both sides

∫ 50v^-2 dv = -∫dt

(50v^-2+1) / (-2+1)= -t

50v^-1 / -1 = -t

- 50v^-1 = -t

- 50/v = - t

Divide both sides by -1

50/v = t. Equation 2

Then, v ranges from 125 to 10 and t ranges from 0 to t''

[ 50/10 - 50/125 ] = t''

5 - 0.4 = t''

t'' = 4.6 seconds

Then, the time taken to decelerate from 125s to 10s is 4.6 seconds.

So the total time is

t = t' + t''

t = 5 + 4.6

t = 9.6 seconds

b. Total distanctraveleded.

First case again,

We want to find the distance travelled from t=0 to t = 5seconds

a = 50—10t

We already got v, check equation 1

v = 50t —10t²/2 + C

v = 50t — 5t² + C

We add a constant because it is not a definite integral

Now, at t= 0 v=0

So, 0 = 0 - 0 + C

Then, C=0

So, v = 50t — 5t²

Also, we know that v=dx/dt

Therefore, dx/dt = 50t — 5t²

Using variable separation

dx = (50t —5t²)dt

Integrate both sides.

∫dx = ∫(50t —5t²)dt

x = 50t²/2 — 5 t³/3 from t=0 to t=5

x' = [25t² — 5t³/3 ]. 0<t<5

x' = 25×5² — 5×5³/3 —0

x' = 625 — 208.333

x' = 416.667m

Stage 2

The distance moved from

t=0 to t =4.6seconds

a = -0.002v²

We already derived v(t) from the function above, check equation 2

50/v = t + C.

When, t = 0 v = 125

50/125 = 0 + C

0.4 = C

Then, the function becomes

50/v = t + 0.4

50v^-1 = t + 0.4

Now, v= dx/dt

50(dx/dt)^-1 = t +0.4

50dt/dx = t + 0.4

Using variable separation

50/(t+0.4) dt = dx

Integrate both sides

∫50/(t+0.4) dt = ∫ dx

50 In(t+0.4) = x

t ranges from 0 to 4.6seconds

50In(4.6+0.4)—50In(4.6-0.4) = x''

x'' = 50In(5) —50In(4.2)

x'' = 8.72m

Then, total distance is

x = x' + x''

x = 416.67+8.72

x = 425.39m

The total distance travelled in both cases is 425.39m

5 0
2 years ago
Read 2 more answers
Why is using two thin blankets in bed usually warmer than one thick one?
Korolek [52]
I think it is because a big thick blanket has more room in it. if you have two thin blankets there isn't a whole lot there so it keeps the warmth in. <span />
4 0
3 years ago
Read 2 more answers
Other questions:
  • When jogging outside you accidently bump into a curb. Your feet stop but your body continues to move forward and you end up on t
    5·2 answers
  • What is another principle an artist can follow to create the illusion of depth on a flat surface?
    10·1 answer
  • The electric force between two charged balloons is 0.12 newtons. If the distance between the two balloons is halved, what will b
    9·2 answers
  • X-rays cannot pass through Earth's atmosphere. Which of these is the best location to place a telescope used to observe x-rays f
    6·2 answers
  • Can you see gas in a bottle
    9·2 answers
  • A bowling ball has a mass of 10 kilograms. A tennis ball has a mass of 0.08 kilogram. How much inertia does the bowling ball hav
    6·1 answer
  • After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. T
    14·1 answer
  • Which of the following is a negative environmental impact of using solar
    9·1 answer
  • An object is at rest. There are several forces acting on the object, but the net force is zero. If all the
    12·1 answer
  • Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges d
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!