1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
3 years ago
15

A wave traveling in the positive x-direction with a frequency of 50.0 Hz is shown in the figure below. Find the following values

for this wave: a. amplitude b. wavelength c. period d. speed

Physics
1 answer:
Klio2033 [76]3 years ago
5 0

Answer:

Explanation:

a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.

b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or \lambda=20.0cm

c. The period, or T, of a wave is found in the equation

f=\frac{1}{T} were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:

50.0=\frac{1}{T} so

T=\frac{1}{50.0} and

T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)

d. The speed of the wave is found in the equation

f=\frac{v}{\lambda} and since we already have the frequency and we solved for the wavelength already, filling in:

50.0=\frac{v}{20.0} and

v = 50.0(20.0) so

v = 1.00 × 10³ m/s

And there you go!

You might be interested in
Maggie completed a 10000-m race at an average speed of 160
Gala2k [10]

Answer: 200m/min

Explanation:

Divide 10000m by 160m/min, you will get the answer 62.5. You then subtract 12.5 from 62.5 to understand what you will need your answer for the other person’s speed will be. 10000m divided by 50min is 200m/min.

3 0
3 years ago
Decomposition breaks down organic material into simpler units and:
Lady_Fox [76]

Answer:

d.) provides proteins for plants​

Explanation:

5 0
3 years ago
Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
Over [174]
It depends on what that "certain amount" is.
7 0
3 years ago
Light travels from a
Mila [183]

Answer:

Non-uniform velocity as the laser light beam has got reflected by the mirror

And as the light got reflected there is a change in velocity making it non-uniform velocity

5 0
3 years ago
A) One Strategy in a snowball fight the snowball at a hangover level ground. While your opponent is watching this first snowfall
Alexandra [31]

Answers:

a) \theta_{2}=38\°

b) t=0.495 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=14.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=52\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(14.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(52\°))   (9)

x=19.684 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=75.99\°  

\theta_{2}=37.99\° \approx 38\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(14.1 m/s)sin(52\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.267 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(14.1 m/s)sin(38\°)}{-9.8m/s^{2}}   (18)

t_{2}=1.771 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.267 s - 1.771 s  

Finally:

t=0.495 s  

4 0
3 years ago
Other questions:
  • In the past, it was common for waste rocks from mines to be dumped in piles, known as tailings piles. These piles were sometimes
    5·2 answers
  • A friend is telling you about a type of high-energy, short-wavelength electromagnetic wave. She is MOST LIKELY to be talking abo
    14·1 answer
  • Which of these is an example of electromagnetic induction? A current passing through a resistor uses power IR2. A current throug
    11·1 answer
  • Two identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius
    10·1 answer
  • Two sections, A and B, are 0.5 km apart along a 0.05 m diameter rough concrete pipe. A is 115 m higher than B, the water tempera
    14·1 answer
  • A conductor carries a current that is decreasing exponentially with time. The current is modeled as ????=????0????−????/???? , w
    10·1 answer
  • Examine the words and/or phrases below and determine the relationship among the majority of words/phrases. Choose the option tha
    12·1 answer
  • How to measure the speed of sound in air?
    7·1 answer
  • ANSWER ASAP . Which of the screws below requires the least amount of effort force to turn?
    8·2 answers
  • Force due to gravity. While JWST is in orbit, the Earth will be at a distance of 1.494 x 109 m from the telescope, and the Sun w
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!