Answer:
initial speed of the bicker = 7m/s
I'm not really sure what specific answer they're looking for, but if it's an open-ended question, then let's think about it this way...
A light year, is the distance it takes for light to travel in a year. If an object is 50,000 light years away, then by the time the light travels to us, 50,000 years has passed. We are looking at a 50,000 year old image of that object. (ignoring gravity and spatial expansion fun stuffs)
Answer:
= 26.94 m/s
Explanation:
given,
angle of inclination = 30°
mass of the sleigh = 200 kg
coefficient of kinetic friction = 0.2
height of inclination = 10 m
pull force be = 5000 N
now,.
T - f_s - mg sin \theta = m aT−f
s
−mgsinθ=ma
T - \mu N - mg sin \theta = m aT−μN−mgsinθ=ma
T - \mu mg - mg sin \theta = m aT−μmg−mgsinθ=ma
a = \dfrac{T}{m} - \mu g - g sin \thetaa=
m
T
−μg−gsinθ
a = \dfrac{5000}{200} - \0.2\times 9.8 - 9.8 \times sin 30^0a=
200
5000
−\0.2×9.8−9.8×sin30
0
a = 18.14\ m/s^2a=18.14 m/s
2
L = \dfrac{10}{sin 30}L=
sin30
10
L = 20 m
v² = u² + 2 as
v² = 0 + 2 x 18.14 x 20
v = 26.94 m/s
Answer:
322 kJ
Explanation:
The work is the energy that a force produces when realizes a displacement. So, for a gas, it occurs when it expands or when it compress.
When the gas expands it realizes work, so the work is positive, when it compress, it's suffering work, so the work is negative.
For a constant pressure, the work can be calcutated by:
W = pxΔV, where W is the work, p is the pressure, and ΔV is the volume variation. To find the work in Joules, the pressure must be in Pascal (1 atm = 101325 Pa), and the volume in m³ (1 L = 0.001 m³), so:
p = 60 atm = 6.08x10⁶ Pa
ΔV = 82.0 - 29.0 = 53 L = 0.053 m³
W = 6.08x10⁶x0.053
W = 322x10³ J
W = 322 kJ
Please give us the picture and tell us what quantity you're asked to find.